All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.apexes.commons.lang.NTPTimeMillis Maven / Gradle / Ivy

There is a newer version: 2.1.6
Show newest version
package net.apexes.commons.lang;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.util.concurrent.TimeUnit;

/**
 * @author hedyn
 */
public class NTPTimeMillis {

    public static final int DEFAULT_PORT = 123;
    static final int DEFAULT_TIMEOUT_MS = 3000;

    private static final int ORIGINATE_TIME_OFFSET = 24;
    private static final int RECEIVE_TIME_OFFSET = 32;
    private static final int TRANSMIT_TIME_OFFSET = 40;
    private static final int NTP_PACKET_SIZE = 48;

    private static final int NTP_MODE_CLIENT = 3;
    private static final int NTP_VERSION = 3;

    // Number of seconds between Jan 1, 1900 and Jan 1, 1970
    // 70 years plus 17 leap days
    private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;

    public static long requestTime(InetAddress address) throws Exception {
        return requestTime(address, DEFAULT_PORT, DEFAULT_TIMEOUT_MS);
    }

    public static long requestTime(InetAddress address, int port, int timeout) throws Exception {
        try (DatagramSocket socket = new DatagramSocket()) {
            socket.setSoTimeout(timeout);
            byte[] buffer = new byte[NTP_PACKET_SIZE];
            DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, port);

            // set mode = 3 (client) and version = 3
            // mode is in low 3 bits of first byte
            // version is in bits 3-5 of first byte
            buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);

            // get current time and write it to the request packet
            long requestTime = System.currentTimeMillis();
            long requestTicks = System.nanoTime();
            writeTimeStamp(buffer, requestTime);

            socket.send(request);

            // read the response
            DatagramPacket response = new DatagramPacket(buffer, buffer.length);
            socket.receive(response);
            long responseTicks = System.nanoTime();
            long responseTime = requestTime + TimeUnit.NANOSECONDS.toMillis(responseTicks - requestTicks);

            // extract the results
            long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
            long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
            long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
            // receiveTime = originateTime + transit + skew
            // responseTime = transmitTime + transit - skew
            // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
            //             = ((originateTime + transit + skew - originateTime) +
            //                (transmitTime - (transmitTime + transit - skew)))/2
            //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
            //             = (transit + skew - transit + skew)/2
            //             = (2 * skew)/2 = skew
            long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime)) / 2;

            // save our results - use the times on this side of the network latency
            // (response rather than request time)
            return responseTime + clockOffset;
        }
    }

    /**
     * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
     */
    private static long read32(byte[] buffer, int offset) {
        byte b0 = buffer[offset];
        byte b1 = buffer[offset + 1];
        byte b2 = buffer[offset + 2];
        byte b3 = buffer[offset + 3];

        // convert signed bytes to unsigned values
        int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
        int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
        int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
        int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);

        return ((long) i0 << 24) + ((long) i1 << 16) + ((long) i2 << 8) + (long) i3;
    }

    /**
     * Reads the NTP time stamp at the given offset in the buffer and returns
     * it as a system time (milliseconds since January 1, 1970).
     */
    private static long readTimeStamp(byte[] buffer, int offset) {
        long seconds = read32(buffer, offset);
        long fraction = read32(buffer, offset + 4);
        return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
    }

    /**
     * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
     * at the given offset in the buffer.
     */
    private static void writeTimeStamp(byte[] buffer, long time) {
        long seconds = time / 1000L;
        long milliseconds = time - seconds * 1000L;
        seconds += OFFSET_1900_TO_1970;

        int offset = TRANSMIT_TIME_OFFSET;
        // write seconds in big endian format
        buffer[offset++] = (byte) (seconds >> 24);
        buffer[offset++] = (byte) (seconds >> 16);
        buffer[offset++] = (byte) (seconds >> 8);
        buffer[offset++] = (byte) (seconds);

        long fraction = milliseconds * 0x100000000L / 1000L;
        // write fraction in big endian format
        buffer[offset++] = (byte) (fraction >> 24);
        buffer[offset++] = (byte) (fraction >> 16);
        buffer[offset++] = (byte) (fraction >> 8);
        // low order bits should be random data
        buffer[offset] = (byte) (Math.random() * 255.0);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy