All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.automatalib.util.automata.ads.StateEquivalence Maven / Gradle / Ivy

Go to download

This artifact provides various common utility operations for analyzing and manipulating automata and graphs, such as traversal, minimization and copying.

There is a newer version: 0.11.0
Show newest version
/* Copyright (C) 2013-2019 TU Dortmund
 * This file is part of AutomataLib, http://www.automatalib.net/.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package net.automatalib.util.automata.ads;

import java.util.Collection;
import java.util.Iterator;
import java.util.Optional;
import java.util.Set;
import java.util.function.Function;
import java.util.stream.Collectors;

import net.automatalib.automata.UniversalDeterministicAutomaton;
import net.automatalib.automata.transducers.MealyMachine;
import net.automatalib.commons.util.Pair;
import net.automatalib.graphs.ads.ADSNode;
import net.automatalib.graphs.ads.impl.ADSLeafNode;
import net.automatalib.util.automata.Automata;
import net.automatalib.words.Alphabet;
import net.automatalib.words.Word;

/**
 * A utility class for computing an adaptive distinguishing sequence by means of solving the state equivalence problems,
 * i.e. computing and ADS for two states only.
 *
 * @author frohme
 */
public final class StateEquivalence {

    private StateEquivalence() {
    }

    /**
     * Computes a two-state ADS by using {@link Automata#findSeparatingWord(UniversalDeterministicAutomaton,
     * UniversalDeterministicAutomaton, Collection)}.
     *
     * @param automaton
     *         the automaton for which an ADS should be computed
     * @param input
     *         the input alphabet of the automaton
     * @param states
     *         the set of states which should be distinguished by the computed ADS
     * @param 
     *         (hypothesis) state type
     * @param 
     *         input alphabet type
     * @param 
     *         output alphabet type
     *
     * @return {@code Optional.empty()} if there exists no ADS that distinguishes the given states, a valid ADS
     * otherwise.
     *
     * @throws IllegalArgumentException
     *         if passed anything other than two states.
     */
    public static  Optional> compute(final MealyMachine automaton,
                                                               final Alphabet input,
                                                               final Set states) throws IllegalArgumentException {

        if (states.size() != 2) {
            throw new IllegalArgumentException("StateEquivalence can only distinguish 2 states");
        }

        final SplitTree node = new SplitTree<>(states);
        node.getMapping().putAll(states.stream().collect(Collectors.toMap(Function.identity(), Function.identity())));

        return compute(automaton, input, node);
    }

    /**
     * See {@link #compute(MealyMachine, Alphabet, Set)}. Internal version, that uses the {@link SplitTree}
     * representation.
     */
    static  Optional> compute(final MealyMachine automaton,
                                                        final Alphabet input,
                                                        final SplitTree node) {

        final Iterator targetStateIterator = node.getPartition().iterator();
        final S s1 = targetStateIterator.next();
        final S s2 = targetStateIterator.next();

        final Word separatingWord = Automata.findSeparatingWord(automaton, s1, s2, input);

        // sep word may be non existent, if current hypothesis is not consistent
        if (separatingWord == null) {
            return Optional.empty();
        }

        final Word s1Output = automaton.computeStateOutput(s1, separatingWord);
        final Word s2Output = automaton.computeStateOutput(s2, separatingWord);
        final Word sharedOutput = s1Output.longestCommonPrefix(s2Output);
        final Word trace = separatingWord.prefix(sharedOutput.length() + 1);

        final Pair, ADSNode> ads = ADSUtil.buildFromTrace(automaton, trace, s1);

        final ADSNode head = ads.getFirst();
        final ADSNode tail = ads.getSecond();

        final ADSNode s1FinalNode = new ADSLeafNode<>(tail, node.getMapping().get(s1));
        final ADSNode s2FinalNode = new ADSLeafNode<>(tail, node.getMapping().get(s2));

        tail.getChildren().put(s1Output.getSymbol(sharedOutput.length()), s1FinalNode);
        tail.getChildren().put(s2Output.getSymbol(sharedOutput.length()), s2FinalNode);

        return Optional.of(head);
    }
}