net.automatalib.util.automata.cover.Covers Maven / Gradle / Ivy
Show all versions of automata-util Show documentation
/* Copyright (C) 2013-2019 TU Dortmund
* This file is part of AutomataLib, http://www.automatalib.net/.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package net.automatalib.util.automata.cover;
import java.util.ArrayDeque;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.Queue;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import javax.annotation.ParametersAreNonnullByDefault;
import com.google.common.collect.Sets;
import net.automatalib.automata.DeterministicAutomaton;
import net.automatalib.commons.util.mappings.MutableMapping;
import net.automatalib.words.Word;
/**
* @author Malte Isberner
* @author frohme
*/
@ParametersAreNonnullByDefault
public final class Covers {
private Covers() {
}
/**
* Computes a state cover for a given automaton.
*
* A state cover is a set C of input sequences, such that for each state s of an automaton, there
* exists an input sequence in C that transitions the automaton from its initial state to state s.
*
* Note: if restrictions on the {@code inputs} parameter do not allow to reach certain states, the computed cover is
* not complete.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param states
* the collection in which the sequences will be stored
* @param
* input symbol type
*/
public static void stateCover(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection super Word> states) {
cover(automaton, inputs, states::add, w -> {});
}
/**
* Returns an iterator for the sequences of a state cover. Sequences are computed lazily (i.e. as requested by the
* iterators {@link Iterator#next() next} method.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param
* input symbol type
*
* @return an iterator for the input sequences of the cover.
*
* @see #stateCover(DeterministicAutomaton, Collection, Collection)
*/
public static Iterator> stateCoverIterator(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs) {
return new IncrementalStateCoverIterator<>(automaton, inputs, Collections.emptyList());
}
/**
* Computes a transition cover for a given automaton.
*
* A transition cover is a set C of input sequences, such that for each state s and each input symbol
* i of an automaton, there exists an input sequence in C that starts from the initial state of the
* automaton and ends with the transition that applies i to state s.
*
* Note: if restrictions on the {@code inputs} parameter do not allow to reach certain transitions, the computed
* cover is not complete.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param transitions
* the collection in which the sequences will be stored
* @param
* input symbol type
*/
public static void transitionCover(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection super Word> transitions) {
cover(automaton, inputs, w -> {}, transitions::add);
}
/**
* Returns an iterator for the sequences of a transition cover. Sequences are computed lazily (i.e. as requested by
* the iterators {@link Iterator#next() next} method.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param
* input symbol type
*
* @return an iterator for the input sequences of the cover.
*
* @see #transitionCover(DeterministicAutomaton, Collection, Collection)
*/
public static Iterator> transitionCoverIterator(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs) {
return new TransitionCoverIterator<>(automaton, inputs);
}
/**
* Computes a structural cover for a given automaton.
*
* A structural cover is the union of a state cover and a transition cover
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param cover
* the collection in which the sequences will be stored
* @param
* input symbol type
*
* @see #stateCover(DeterministicAutomaton, Collection, Collection)
* @see #transitionCover(DeterministicAutomaton, Collection, Collection)
*/
public static void structuralCover(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection super Word> cover) {
cover(automaton, inputs, cover::add, cover::add);
}
/**
* Utility method that allows to compute a state and transition cover simultaneously.
*
* @param automaton
* the automaton for which the covers should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param states
* the collection in which the state cover sequences will be stored
* @param transitions
* the collection in which the transition cover sequences will be stored
* @param
* input symbol type
*
* @see #stateCover(DeterministicAutomaton, Collection, Collection)
* @see #transitionCover(DeterministicAutomaton, Collection, Collection)
*/
public static void cover(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection super Word> states,
Collection super Word> transitions) {
cover(automaton, inputs, states::add, transitions::add);
}
private static void cover(DeterministicAutomaton automaton,
Collection extends I> inputs,
Consumer super Word> states,
Consumer super Word> transitions) {
MutableMapping> reach = automaton.createStaticStateMapping();
Queue bfsQueue = new ArrayDeque<>();
S init = automaton.getInitialState();
reach.put(init, Word.epsilon());
bfsQueue.add(init);
states.accept(Word.epsilon());
S curr;
while ((curr = bfsQueue.poll()) != null) {
Word as = reach.get(curr);
for (I in : inputs) {
S succ = automaton.getSuccessor(curr, in);
if (succ == null) {
continue;
}
final Word succAs = as.append(in);
if (reach.get(succ) == null) {
reach.put(succ, succAs);
states.accept(succAs);
bfsQueue.add(succ);
}
transitions.accept(succAs);
}
}
}
/**
* Computes an incremental state cover for a given automaton, i.e. a cover that only contains the missing sequences
* for obtaining a complete state cover.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param oldStates
* the collection containing the already existing sequences of the state cover
* @param newStates
* the collection in which the missing sequences will be stored
* @param
* input symbol type
*
* @return {@code true} if new sequences have been added to the state cover, {@code false} otherwise.
*
* @see #stateCover(DeterministicAutomaton, Collection, Collection)
*/
public static boolean incrementalStateCover(DeterministicAutomaton automaton,
Collection extends I> inputs,
Collection extends Word> oldStates,
Collection super Word> newStates) {
MutableMapping> reach = automaton.createStaticStateMapping();
boolean augmented = false;
Queue> bfsQueue = new ArrayDeque<>();
buildReachFromStateCover(reach, bfsQueue, automaton, oldStates, Record::new);
S init = automaton.getInitialState();
if (reach.get(init) == null) {
// apparently the initial state was not yet covered
Record rec = new Record<>(init, Word.epsilon());
reach.put(init, rec);
bfsQueue.add(rec);
newStates.add(Word.epsilon());
augmented = true;
}
Record curr;
while ((curr = bfsQueue.poll()) != null) {
S state = curr.state;
Word as = curr.accessSequence;
for (I in : inputs) {
S succ = automaton.getSuccessor(state, in);
if (succ == null) {
continue;
}
if (reach.get(succ) == null) {
Word succAs = as.append(in);
Record succRec = new Record<>(succ, succAs);
reach.put(succ, succRec);
bfsQueue.add(succRec);
newStates.add(succAs);
augmented = true;
}
}
}
return augmented;
}
/**
* Returns an iterator for the remaining sequences of a state cover. Sequences are computed lazily (i.e. as
* requested by the iterators {@link Iterator#next() next} method.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param stateCover
* the collection containing the already existing sequences of the state cover
* @param
* input symbol type
*
* @return an iterator for the remaining input sequences of the cover.
*
* @see #incrementalStateCover(DeterministicAutomaton, Collection, Collection, Collection)
*/
public static Iterator> incrementalStateCoverIterator(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection extends Word> stateCover) {
return new IncrementalStateCoverIterator<>(automaton, inputs, stateCover);
}
/**
* Computes an incremental transition cover for a given automaton, i.e. a cover that only contains the missing
* sequences for obtaining a complete transition cover.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param oldTransCover
* the collection containing the already existing sequences of the transition cover
* @param newTransCover
* the collection in which the missing sequences will be stored
* @param
* input symbol type
*
* @return {@code true} if new sequences have been added to the state cover, {@code false} otherwise.
*
* @see #transitionCover(DeterministicAutomaton, Collection, Collection)
*/
public static boolean incrementalTransitionCover(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection extends Word> oldTransCover,
Collection super Word> newTransCover) {
final int oldTransSize = newTransCover.size();
incrementalCover(automaton, inputs, Collections.emptySet(), oldTransCover, w -> {}, newTransCover::add);
return oldTransSize < newTransCover.size();
}
/**
* Returns an iterator for the remaining sequences of a transition cover. Sequences are computed lazily (i.e. as
* requested by the iterators {@link Iterator#next() next} method.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param transitionCover
* the collection containing the already existing sequences of the transition cover
* @param
* input symbol type
*
* @return an iterator for the remaining input sequences of the cover.
*
* @see #incrementalStateCover(DeterministicAutomaton, Collection, Collection, Collection)
*/
public static Iterator> incrementalTransitionCoverIterator(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection extends Word> transitionCover) {
return new IncrementalTransitionCoverIterator<>(automaton, inputs, transitionCover);
}
/**
* Computes an incremental structural cover for a given automaton, i.e. a cover that only contains the missing
* sequences for obtaining a complete structural cover.
*
* @param automaton
* the automaton for which the cover should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param oldCover
* the collection containing the already existing sequences of the structural cover
* @param newCover
* the collection in which the missing sequences will be stored
* @param
* input symbol type
*
* @return {@code true} if new sequences have been added to the structural cover, {@code false} otherwise.
*
* @see #structuralCover(DeterministicAutomaton, Collection, Collection)
*/
public static boolean incrementalStructuralCover(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection extends Word> oldCover,
Collection super Word> newCover) {
final int oldCoverSize = newCover.size();
incrementalCover(automaton, inputs, oldCover, Collections.emptySet(), newCover::add, newCover::add);
return oldCoverSize < newCover.size();
}
/**
* Utility method that allows to compute an incremental state and transition cover simultaneously.
*
* @param automaton
* the automaton for which the covers should be computed
* @param inputs
* the set of input symbols allowed in the cover sequences
* @param oldStateCover
* the collection containing the already existing sequences of the state cover
* @param oldTransCover
* the collection containing the already existing sequences of the transition cover
* @param newStateCover
* the collection in which the missing state cover sequences will be stored
* @param newTransCover
* the collection in which the missing transition cover sequences will be stored
* @param
* input symbol type
*
* @return {@code true} if new sequences have been added to the structural cover, {@code false} otherwise.
*
* @see #incrementalStateCover(DeterministicAutomaton, Collection, Collection, Collection)
* @see #incrementalStateCover(DeterministicAutomaton, Collection, Collection, Collection)
*/
public static boolean incrementalCover(DeterministicAutomaton, I, ?> automaton,
Collection extends I> inputs,
Collection extends Word> oldStateCover,
Collection extends Word> oldTransCover,
Collection super Word> newStateCover,
Collection super Word> newTransCover) {
final int oldStateSize = newStateCover.size();
final int oldTransSize = newTransCover.size();
incrementalCover(automaton, inputs, oldStateCover, oldTransCover, newStateCover::add, newTransCover::add);
return oldStateSize < newStateCover.size() || oldTransSize < newTransCover.size();
}
private static void incrementalCover(DeterministicAutomaton automaton,
Collection extends I> inputs,
Collection extends Word> oldStateCover,
Collection extends Word> oldTransCover,
Consumer super Word> newStateCover,
Consumer super Word> newTransCover) {
MutableMapping> reach = automaton.createStaticStateMapping();
Queue> bfsQueue = new ArrayDeque<>();
// We enforce that the initial state *always* is covered by the empty word,
// regardless of whether other sequence in oldCover cover it
S init = automaton.getInitialState();
Record initRec = new Record<>(init, Word.epsilon(), Sets.newHashSetWithExpectedSize(inputs.size()));
bfsQueue.add(initRec);
reach.put(init, initRec);
boolean hasEpsilon = buildReachFromStateCover(reach,
bfsQueue,
automaton,
oldStateCover,
(s, as) -> new Record<>(s,
as,
Sets.newHashSetWithExpectedSize(inputs.size())));
// Add transition cover information from *state covers*
for (Word oldStateAs : oldStateCover) {
if (oldStateAs.isEmpty()) {
continue;
}
Word asPrefix = oldStateAs.prefix(oldStateAs.length() - 1);
S pred = automaton.getState(asPrefix);
assert pred != null;
Record predRec = reach.get(pred);
if (predRec == null) {
throw new IllegalArgumentException(
"State cover was not prefix-closed: prefix of " + oldStateAs + " not in set");
}
I lastSym = oldStateAs.lastSymbol();
predRec.coveredInputs.add(lastSym);
}
// Till now, we haven't augmented any set.
if (!hasEpsilon) {
newStateCover.accept(Word.epsilon());
}
// Add transition covers
buildReachFromTransitionCover(reach,
bfsQueue,
automaton,
oldTransCover,
(s, as) -> new Record<>(s, as, Sets.newHashSetWithExpectedSize(inputs.size())),
newStateCover);
Record curr;
while ((curr = bfsQueue.poll()) != null) {
for (I input : inputs) {
if (curr.coveredInputs.add(input)) {
S succ = automaton.getSuccessor(curr.state, input);
Word newAs = curr.accessSequence.append(input);
if (succ != null) {
Record succRec = reach.get(succ);
if (succRec == null) {
// new state!
succRec = new Record<>(succ, newAs, Sets.newHashSetWithExpectedSize(inputs.size()));
bfsQueue.add(succRec);
reach.put(succ, succRec);
newStateCover.accept(newAs);
}
// new transition
newTransCover.accept(newAs);
}
}
}
}
}
static boolean buildReachFromStateCover(MutableMapping> reach,
Queue> bfsQueue,
DeterministicAutomaton automaton,
Collection extends Word> oldStateCover,
BiFunction, Record> recordBuilder) {
boolean hasEpsilon = false;
for (Word oldStateAs : oldStateCover) {
S state = automaton.getState(oldStateAs);
if (state == null || reach.get(state) != null) {
if (oldStateAs.isEmpty()) {
hasEpsilon = true;
}
continue; // strange, but we'll ignore it
}
Record rec = recordBuilder.apply(state, oldStateAs);
bfsQueue.add(rec);
reach.put(state, rec);
}
return hasEpsilon;
}
static void buildReachFromTransitionCover(MutableMapping> reach,
Queue> bfsQueue,
DeterministicAutomaton automaton,
Collection extends Word> oldTransCover,
BiFunction, Record> recordBuilder,
Consumer super Word> newStateCallback) {
for (Word oldTransAs : oldTransCover) {
// Check if this transition now leads to a new state
S state = automaton.getState(oldTransAs);
if (state != null) {
Record rec = reach.get(state);
if (rec == null) {
// if so, add it to the state cover and to the queue
rec = recordBuilder.apply(state, oldTransAs);
bfsQueue.add(rec);
reach.put(state, rec);
newStateCallback.accept(oldTransAs);
}
}
// In any case, mark the transition as covered
Word predAs = oldTransAs.prefix(oldTransAs.length() - 1);
S pred = automaton.getState(predAs);
if (pred == null) {
throw new IllegalArgumentException(
"Invalid transition: prefix of transition " + oldTransAs + " not covered by state cover");
}
I lastSym = oldTransAs.lastSymbol();
Record predRec = reach.get(pred);
if (predRec == null) {
predRec = recordBuilder.apply(state, oldTransAs);
bfsQueue.add(predRec);
reach.put(pred, predRec);
newStateCallback.accept(oldTransAs);
}
predRec.coveredInputs.add(lastSym);
}
}
}