All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.automatalib.util.automata.fsa.DFAs Maven / Gradle / Ivy

Go to download

This artifact provides various common utility operations for analyzing and manipulating automata and graphs, such as traversal, minimization and copying.

There is a newer version: 0.11.0
Show newest version
/* Copyright (C) 2013-2019 TU Dortmund
 * This file is part of AutomataLib, http://www.automatalib.net/.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package net.automatalib.util.automata.fsa;

import java.util.Collection;

import net.automatalib.automata.concepts.InputAlphabetHolder;
import net.automatalib.automata.fsa.DFA;
import net.automatalib.automata.fsa.MutableDFA;
import net.automatalib.automata.fsa.impl.compact.CompactDFA;
import net.automatalib.ts.acceptors.DeterministicAcceptorTS;
import net.automatalib.util.automata.copy.AutomatonCopyMethod;
import net.automatalib.util.automata.copy.AutomatonLowLevelCopy;
import net.automatalib.util.automata.minimizer.hopcroft.HopcroftMinimization;
import net.automatalib.util.ts.acceptors.AcceptanceCombiner;
import net.automatalib.util.ts.acceptors.Acceptors;
import net.automatalib.util.ts.copy.TSCopy;
import net.automatalib.util.ts.traversal.TSTraversalMethod;
import net.automatalib.words.Alphabet;

/**
 * Operations on {@link DFA}s.
 * 

* Note that the methods provided by this class do not modify their input arguments. Such methods are instead provided * by the {@link MutableDFAs} class. * * @author Malte Isberner */ public final class DFAs { private DFAs() { throw new IllegalStateException("Constructor should never be invoked"); } /** * Most general way of combining two DFAs. The behavior is the same as of the above {@link #combine(DFA, DFA, * Collection, MutableDFA, AcceptanceCombiner)}, but the result automaton is automatically created as a {@link * CompactDFA}. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputAlphabet * the input alphabet * @param combiner * combination method for acceptance values * * @return a new DFA representing the combination of the specified DFA */ public static CompactDFA combine(DFA dfa1, DFA dfa2, Alphabet inputAlphabet, AcceptanceCombiner combiner) { return combine(dfa1, dfa2, inputAlphabet, new CompactDFA<>(inputAlphabet), combiner); } /** * Most general way of combining two DFAs. The {@link AcceptanceCombiner} specified via the {@code combiner} * parameter specifies how acceptance values of the DFAs will be combined to an acceptance value in the result DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputs * the input symbols to consider * @param out * the mutable DFA for storing the result * @param combiner * combination method for acceptance values * * @return {@code out}, for convenience */ public static > A combine(DFA dfa1, DFA dfa2, Collection inputs, A out, AcceptanceCombiner combiner) { DeterministicAcceptorTS acc = Acceptors.combine(dfa1, dfa2, combiner); TSCopy.copy(TSTraversalMethod.DEPTH_FIRST, acc, -1, inputs, out); return out; } /** * Calculates the conjunction ("and") of two DFA, and returns the result as a new DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputAlphabet * the input alphabet * * @return a new DFA representing the conjunction of the specified DFA */ public static CompactDFA and(DFA dfa1, DFA dfa2, Alphabet inputAlphabet) { return and(dfa1, dfa2, inputAlphabet, new CompactDFA<>(inputAlphabet)); } /** * Calculates the conjunction ("and") of two DFA, and stores the result in a given mutable DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputs * the input symbols to consider * @param out * a mutable DFA for storing the result * * @return {@code out}, for convenience */ public static > A and(DFA dfa1, DFA dfa2, Collection inputs, A out) { return combine(dfa1, dfa2, inputs, out, AcceptanceCombiner.AND); } /** * Calculates the disjunction ("or") of two DFA, and returns the result as a new DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputAlphabet * the input alphabet * * @return a new DFA representing the conjunction of the specified DFA */ public static CompactDFA or(DFA dfa1, DFA dfa2, Alphabet inputAlphabet) { return or(dfa1, dfa2, inputAlphabet, new CompactDFA<>(inputAlphabet)); } /** * Calculates the disjunction ("or") of two DFA, and stores the result in a given mutable DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputs * the input symbols to consider * @param out * a mutable DFA for storing the result * * @return {@code out}, for convenience */ public static > A or(DFA dfa1, DFA dfa2, Collection inputs, A out) { return combine(dfa1, dfa2, inputs, out, AcceptanceCombiner.OR); } /** * Calculates the exclusive-or ("xor") of two DFA, and returns the result as a new DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputAlphabet * the input alphabet * * @return a new DFA representing the conjunction of the specified DFA */ public static CompactDFA xor(DFA dfa1, DFA dfa2, Alphabet inputAlphabet) { return xor(dfa1, dfa2, inputAlphabet, new CompactDFA<>(inputAlphabet)); } /** * Calculates the exclusive-or ("xor") of two DFA, and stores the result in a given mutable DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputs * the input symbols to consider * @param out * a mutable DFA for storing the result * * @return {@code out}, for convenience */ public static > A xor(DFA dfa1, DFA dfa2, Collection inputs, A out) { return combine(dfa1, dfa2, inputs, out, AcceptanceCombiner.XOR); } /** * Calculates the equivalence ("<=>") of two DFA, and returns the result as a new DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputAlphabet * the input alphabet * * @return a new DFA representing the conjunction of the specified DFA */ public static CompactDFA equiv(DFA dfa1, DFA dfa2, Alphabet inputAlphabet) { return equiv(dfa1, dfa2, inputAlphabet, new CompactDFA<>(inputAlphabet)); } /** * Calculates the equivalence ("<=>") of two DFA, and stores the result in a given mutable DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputs * the input symbols to consider * @param out * a mutable DFA for storing the result * * @return {@code out}, for convenience */ public static > A equiv(DFA dfa1, DFA dfa2, Collection inputs, A out) { return combine(dfa1, dfa2, inputs, out, AcceptanceCombiner.EQUIV); } /** * Calculates the implication ("=>") of two DFA, and returns the result as a new DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputAlphabet * the input alphabet * * @return a new DFA representing the conjunction of the specified DFA */ public static CompactDFA impl(DFA dfa1, DFA dfa2, Alphabet inputAlphabet) { return impl(dfa1, dfa2, inputAlphabet, new CompactDFA<>(inputAlphabet)); } /** * Calculates the implication ("=>") of two DFA, and stores the result in a given mutable DFA. * * @param dfa1 * the first DFA * @param dfa2 * the second DFA * @param inputs * the input symbols to consider * @param out * a mutable DFA for storing the result * * @return {@code out}, for convenience */ public static > A impl(DFA dfa1, DFA dfa2, Collection inputs, A out) { return combine(dfa1, dfa2, inputs, out, AcceptanceCombiner.IMPL); } /** * Calculates the complement (negation) of a DFA, and returns the result as a new DFA. *

* Note that unlike {@link MutableDFA#flipAcceptance()}, undefined transitions are treated as leading to a rejecting * sink state (and are thus turned into an accepting sink). * * @param dfa * the DFA to complement * @param inputAlphabet * the input alphabet * * @return a new DFA representing the complement of the specified DFA */ public static CompactDFA complement(DFA dfa, Alphabet inputAlphabet) { return complement(dfa, inputAlphabet, new CompactDFA<>(inputAlphabet)); } /** * Calculates the complement (negation) of a DFA, and stores the result in a given mutable DFA. *

* Note that unlike {@link MutableDFA#flipAcceptance()}, undefined transitions are treated as leading to a rejecting * sink state (and are thus turned into an accepting sink). * * @param dfa * the DFA to complement * @param inputs * the input symbols to consider * @param out * a mutable DFA for storing the result * * @return {@code out}, for convenience */ public static > A complement(DFA dfa, Collection inputs, A out) { AutomatonLowLevelCopy.copy(AutomatonCopyMethod.STATE_BY_STATE, dfa, inputs, out, b -> (b == null) || !b, t -> null); MutableDFAs.complete(out, inputs, false, true); return out; } public static CompactDFA complete(DFA dfa, Alphabet inputs) { return complete(dfa, inputs, new CompactDFA<>(inputs)); } public static > A complete(DFA dfa, Collection inputs, A out) { AutomatonLowLevelCopy.copy(AutomatonCopyMethod.DFS, dfa, inputs, out); MutableDFAs.complete(out, inputs, true); return out; } /** * Minimizes the given DFA over the given alphabet. This method does not modify the given DFA, but returns the * minimized version as a new instance. *

* Note: the DFA must be completely specified. * * @param dfa * the DFA to be minimized * @param alphabet * the input alphabet to consider for minimization (this will also be the input alphabet of the resulting * automaton) * * @return a minimized version of the specified DFA */ public static CompactDFA minimize(DFA dfa, Alphabet alphabet) { return HopcroftMinimization.minimizeDFA(dfa, alphabet); } /** * Minimizes the given DFA. This method does not modify the given DFA, but returns the minimized version as a new * instance. *

* Note: the DFA must be completely specified * * @param dfa * the DFA to be minimized * * @return a minimized version of the specified DFA */ public static & InputAlphabetHolder> CompactDFA minimize(A dfa) { return HopcroftMinimization.minimizeDFA(dfa); } /** * Computes whether the language of the given DFA is prefix-closed. * * Assumes all states in the given {@link DFA} are reachable from the initial state. * * @param dfa the DFA to check * @param alphabet the Alphabet * @param the type of state * @param the type of input * * @return whether the DFA is prefix-closed. */ public static boolean isPrefixClosed(DFA dfa, Alphabet alphabet) { return dfa.getStates() .parallelStream() .allMatch(s -> dfa.isAccepting(s) || alphabet.parallelStream().noneMatch(i -> dfa.isAccepting(dfa.getSuccessors(s, i)))); } /** * Computes whether the given {@link DFA} accepts the empty language. * * Assumes all states in the given {@link DFA} are reachable from the initial state. * * @param dfa the {@link DFA} to check. * @param the state type. * * @return whether the given {@link DFA} accepts the empty language. */ public static boolean acceptsEmptyLanguage(DFA dfa) { return dfa.getStates().stream().noneMatch(dfa::isAccepting); } }