![JAR search and dependency download from the Maven repository](/logo.png)
net.sourceforge.cilib.functions.continuous.moo.zdt.ZDT6 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cilib-library Show documentation
Show all versions of cilib-library Show documentation
A library of composable components enabling simpler Computational Intelligence
/** __ __
* _____ _/ /_/ /_ Computational Intelligence Library (CIlib)
* / ___/ / / / __ \ (c) CIRG @ UP
* / /__/ / / / /_/ / http://cilib.net
* \___/_/_/_/_.___/
*/
package net.sourceforge.cilib.functions.continuous.moo.zdt;
import net.sourceforge.cilib.functions.ContinuousFunction;
import net.sourceforge.cilib.problem.FunctionOptimisationProblem;
import net.sourceforge.cilib.problem.MOOptimisationProblem;
import net.sourceforge.cilib.type.types.container.Vector;
/**
* Zitzler-Thiele-Deb Test Function 6
*
* Characteristics:
*
* - Nonconvex Pareto-optimal front.
* - Nonuniform Pareto-optimal front.
*
*
*
* This test function includes two difficulties caused by the nonuniformity of
* the search space: first, the Pareto-optimal solutions are nonuniformly
* distributed along the global Pareto front (the front is biased for solutions
* for which f1(x) is near one); second, the density of the solutions is lowest
* near the Pareto-optimal front and highest away from the front.
*
*
*
* The Pareto-optimal front is formed with g(x) = 1.
*
*
*
* References:
*
*
*
* -
* E. Zitzler, K. Deb and L. Thiele, "Comparison of multiobjective
* evolutionary algorithms: Empirical results", in Evolutionary Computation,
* vol 8, no 2, pp. 173-195, 2000.
*
*
*
*
*/
public final class ZDT6 extends MOOptimisationProblem {
private static final long serialVersionUID = -8294718517983975376L;
private static final String DOMAIN = "R(0:1)^10";
private static class ZDT6_f1 implements ContinuousFunction {
private static final long serialVersionUID = -7611726748395645976L;
@Override
public Double apply(Vector input) {
return 1.0 - Math.exp(-4.0 * input.doubleValueOf(0)) * Math.pow(Math.sin(6.0 * Math.PI * input.doubleValueOf(0)), 6.0);
}
}
private static class ZDT6_g implements ContinuousFunction {
private static final long serialVersionUID = -7961935910114582096L;
@Override
public Double apply(Vector input) {
double sum = 0.0;
for (int i = 1; i < input.size(); ++i) {
sum += input.doubleValueOf(i) / (input.size() - 1.0);
}
return 1.0 + 9.0 * Math.pow(sum, 0.25);
}
}
private static class ZDT6_h implements ContinuousFunction {
private static final long serialVersionUID = -6636124986465822446L;
private final ZDT6_f1 f1;
private final ZDT6_g g;
public ZDT6_h() {
this.f1 = new ZDT6_f1();
this.g = new ZDT6_g();
}
@Override
public Double apply(Vector input) {
return 1.0 - Math.pow(this.f1.apply(input) / this.g.apply(input), 2.0);
}
}
private static class ZDT6_f2 implements ContinuousFunction {
private static final long serialVersionUID = 6790101111642461359L;
private final ZDT6_g g;
private final ZDT6_h h;
public ZDT6_f2() {
this.g = new ZDT6_g();
this.h = new ZDT6_h();
}
@Override
public Double apply(Vector input) {
return this.g.apply(input) * this.h.apply(input);
}
}
public ZDT6() {
FunctionOptimisationProblem zdt6_f1 = new FunctionOptimisationProblem();
zdt6_f1.setFunction(new ZDT6_f1());
zdt6_f1.setDomain(DOMAIN);
add(zdt6_f1);
FunctionOptimisationProblem zdt6_f2 = new FunctionOptimisationProblem();
zdt6_f2.setFunction(new ZDT6_f2());
zdt6_f2.setDomain(DOMAIN);
add(zdt6_f2);
}
public ZDT6(ZDT6 copy) {
super(copy);
}
@Override
public ZDT6 getClone() {
return new ZDT6(this);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy