All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sourceforge.cilib.pso.iterationstrategies.ASynchronousIterationStrategy Maven / Gradle / Ivy

Go to download

A library of composable components enabling simpler Computational Intelligence

There is a newer version: 0.8
Show newest version
/**           __  __
 *    _____ _/ /_/ /_    Computational Intelligence Library (CIlib)
 *   / ___/ / / / __ \   (c) CIRG @ UP
 *  / /__/ / / / /_/ /   http://cilib.net
 *  \___/_/_/_/_.___/
 */
package net.sourceforge.cilib.pso.iterationstrategies;

import fj.F;
import net.sourceforge.cilib.algorithm.population.AbstractIterationStrategy;
import net.sourceforge.cilib.entity.Topology;
import net.sourceforge.cilib.pso.PSO;
import net.sourceforge.cilib.pso.particle.Particle;

/**
 * Implementation of the asynchronous iteration strategy for PSO.
 */
public class ASynchronousIterationStrategy extends AbstractIterationStrategy {

    private static final long serialVersionUID = -3511991873784185698L;

    private F additionalStep = new F() {
        @Override
        public Particle f(Particle a) {
            return a;
        }
    };

    /**
     * {@inheritDoc}
     */
    @Override
    public ASynchronousIterationStrategy getClone() {
        return this;
    }

    /**
     * 

This is an ASynchronous strategy:

*
    *
  1. For all particles:
  2. *
      *
    1. Update the particle velocity
    2. *
    3. Update the particle position
    4. *
    5. Calculate the particle fitness
    6. *
    7. For all particles in the current particle's neighbourhood
    8. *
      1. Update the neighbourhood best
      *
    *
* * @see net.sourceforge.cilib.PSO.IterationStrategy#performIteration() * @param algorithm The algorithm to which an iteration is to be applied. */ public void performIteration(PSO algorithm) { Topology topology = algorithm.getTopology(); for (Particle current : topology) { current.updateVelocity(); // TODO: replace with visitor (will simplify particle interface) current.updatePosition(); // TODO: replace with visitor (will simplify particle interface) boundaryConstraint.enforce(current); current.calculateFitness(); Particle newParticle = additionalStep.f(current); topology.set(topology.indexOf(current), newParticle); for (Particle other : topology.neighbourhood(current)) { if (current.getSocialFitness().compareTo(other.getNeighbourhoodBest().getSocialFitness()) > 0) { other.setNeighbourhoodBest(newParticle); // TODO: neighbourhood visitor? } } } } public void setAdditionalStep(F additionalStep) { this.additionalStep = additionalStep; } public F getAdditionalStep() { return additionalStep; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy