All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sourceforge.cilib.functions.continuous.moo.zdt.ZDT2 Maven / Gradle / Ivy

/**           __  __
 *    _____ _/ /_/ /_    Computational Intelligence Library (CIlib)
 *   / ___/ / / / __ \   (c) CIRG @ UP
 *  / /__/ / / / /_/ /   http://cilib.net
 *  \___/_/_/_/_.___/
 */
package net.sourceforge.cilib.functions.continuous.moo.zdt;

import net.sourceforge.cilib.functions.ContinuousFunction;
import net.sourceforge.cilib.problem.FunctionOptimisationProblem;
import net.sourceforge.cilib.problem.MOOptimisationProblem;
import net.sourceforge.cilib.type.types.container.Vector;

/**
 * 

Zitzler-Thiele-Deb Test Function 2

* * Characteristics: *
    *
  • Nonconvex Pareto-optimal front.
  • *
* *

* This function is representative of the nonconvex counterpart to T1. * The Pareto-optimal front is formed with g(x) = 1 *

* *

* References: *

*

*

    *
  • * E. Zitzler, K. Deb and L. Thiele, "Comparison of multiobjective * evolutionary algorithms: Empirical results", in Evolutionary Computation, * vol 8, no 2, pp. 173-195, 2000. *
  • *
*

* */ public final class ZDT2 extends MOOptimisationProblem { private static final long serialVersionUID = -2949170760033824427L; private static final String DOMAIN = "R(0:1)^30"; private static class ZDT2_h extends ContinuousFunction { private static final long serialVersionUID = 6575398958907399233L; private final ZDT_f1 f1; private final ZDT_g g; public ZDT2_h() { this.f1 = new ZDT_f1(); this.g = new ZDT_g(); } @Override public Double f(Vector input) { return 1.0 - (this.f1.f(input) / this.g.f(input)) * (this.f1.f(input) / this.g.f(input)); } } private static class ZDT2_f2 extends ContinuousFunction { private static final long serialVersionUID = 1983853514735870004L; private final ZDT_g g; private final ZDT2_h h; public ZDT2_f2() { this.g = new ZDT_g(); this.h = new ZDT2_h(); } @Override public Double f(Vector input) { return this.g.f(input) * this.h.f(input); } } public ZDT2() { FunctionOptimisationProblem zdt2_f1 = new FunctionOptimisationProblem(); zdt2_f1.setFunction(new ZDT_f1()); zdt2_f1.setDomain(DOMAIN); add(zdt2_f1); FunctionOptimisationProblem zdt2_f2 = new FunctionOptimisationProblem(); zdt2_f2.setFunction(new ZDT2_f2()); zdt2_f2.setDomain(DOMAIN); add(zdt2_f2); } public ZDT2(ZDT2 copy) { super(copy); } @Override public ZDT2 getClone() { return new ZDT2(this); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy