net.sourceforge.cilib.functions.continuous.moo.zdt.ZDT4 Maven / Gradle / Ivy
/** __ __
* _____ _/ /_/ /_ Computational Intelligence Library (CIlib)
* / ___/ / / / __ \ (c) CIRG @ UP
* / /__/ / / / /_/ / http://cilib.net
* \___/_/_/_/_.___/
*/
package net.sourceforge.cilib.functions.continuous.moo.zdt;
import net.sourceforge.cilib.functions.ContinuousFunction;
import net.sourceforge.cilib.problem.FunctionOptimisationProblem;
import net.sourceforge.cilib.problem.MOOptimisationProblem;
import net.sourceforge.cilib.type.types.container.Vector;
/**
* Zitzler-Thiele-Deb Test Function 4
*
* Characteristics:
*
* - Convex Pareto-optimal front.
* - Multimodal - Several local pareto-optimal fronts.
*
*
*
* This function contains 21^9 local Pareto-optimal fronts and, therefore,
* tests for an EA's ability to deal with multimodality.
*
*
*
* The global Pareto-optimal front is formed with g(x) = 1, the best local
* Pareto-optimal front with g(x) = 1.25. Note that not all local Pareto-optimal
* sets are distinguishable in the objective space.
*
*
*
* References:
*
*
*
* -
* E. Zitzler, K. Deb and L. Thiele, "Comparison of multiobjective
* evolutionary algorithms: Empirical results", in Evolutionary Computation,
* vol 8, no 2, pp. 173-195, 2000.
*
*
*
*
*/
public final class ZDT4 extends MOOptimisationProblem {
private static final long serialVersionUID = 6807423144357771198L;
private static final String DOMAIN = "R(0:1)^1, R(-5:5)^9";
private static class ZDT4_g extends ContinuousFunction {
private static final long serialVersionUID = -4693394582794280778L;
@Override
public Double f(Vector input) {
double sum = 0.0;
for (int i = 1; i < input.size(); ++i) {
sum += input.doubleValueOf(i) * input.doubleValueOf(i) - 10.0 * Math.cos(4.0 * Math.PI * input.doubleValueOf(i));
}
return 1 + 10.0 * (input.size() - 1.0) + sum;
}
}
private static class ZDT4_h extends ContinuousFunction {
private static final long serialVersionUID = 3672916606445089134L;
private final ZDT_f1 f1;
private final ZDT4_g g;
public ZDT4_h() {
this.f1 = new ZDT_f1();
this.g = new ZDT4_g();
}
@Override
public Double f(Vector input) {
return 1.0 - Math.sqrt(this.f1.f(input) / this.g.f(input));
}
}
private static class ZDT4_f2 extends ContinuousFunction {
private static final long serialVersionUID = -4303326355255421549L;
private final ZDT4_g g;
private final ZDT4_h h;
public ZDT4_f2() {
this.g = new ZDT4_g();
this.h = new ZDT4_h();
}
@Override
public Double f(Vector input) {
return this.g.f(input) * this.h.f(input);
}
}
public ZDT4() {
FunctionOptimisationProblem zdt4_f1 = new FunctionOptimisationProblem();
zdt4_f1.setFunction(new ZDT_f1());
zdt4_f1.setDomain(DOMAIN);
add(zdt4_f1);
FunctionOptimisationProblem zdt4_f2 = new FunctionOptimisationProblem();
zdt4_f2.setFunction(new ZDT4_f2());
zdt4_f2.setDomain(DOMAIN);
add(zdt4_f2);
}
public ZDT4(ZDT4 copy) {
super(copy);
}
@Override
public ZDT4 getClone() {
return new ZDT4(this);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy