All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sourceforge.cilib.pso.iterationstrategies.moo.RelaxedNonDominatedMOOSynchronousIterationStrategy Maven / Gradle / Ivy

/**           __  __
 *    _____ _/ /_/ /_    Computational Intelligence Library (CIlib)
 *   / ___/ / / / __ \   (c) CIRG @ UP
 *  / /__/ / / / /_/ /   http://cilib.net
 *  \___/_/_/_/_.___/
 */
package net.sourceforge.cilib.pso.iterationstrategies.moo;

import fj.data.List;
import net.sourceforge.cilib.algorithm.AbstractAlgorithm;
import net.sourceforge.cilib.algorithm.population.AbstractIterationStrategy;
import net.sourceforge.cilib.pso.particle.Particle;
import net.sourceforge.cilib.math.random.generator.Rand;
import net.sourceforge.cilib.problem.Problem;
import net.sourceforge.cilib.problem.solution.MOFitness;
import net.sourceforge.cilib.problem.solution.OptimisationSolution;
import net.sourceforge.cilib.pso.PSO;

/**
 * Implementation of the synchronous iteration strategy for PSO.
 *
 */
public class RelaxedNonDominatedMOOSynchronousIterationStrategy extends AbstractIterationStrategy {
    /**
     * {@inheritDoc}
     */
    @Override
    public RelaxedNonDominatedMOOSynchronousIterationStrategy getClone() {
        return this;
    }

    /**
     * This is an Synchronous strategy:
     * 
    *
  1. For all particles:
  2. *
    1. Update the particle velocity
    2. *
    3. Update the particle position
    *
  3. For all particles:
  4. *
    1. Calculate the particle fitness
    2. *
    3. For all particles in the current particle's neighbourhood:
    4. *
      1. Update the neighbourhood best
    *
* * @param pso The {@link PSO} to have an iteration applied. */ @Override public void performIteration(PSO pso) { List topology = pso.getTopology(); for (Particle current : topology) { current.updateVelocity(); current.updatePosition(); // TODO: replace with visitor (will simplify particle interface) boundaryConstraint.enforce(current); } Problem problem = AbstractAlgorithm.getAlgorithmList().get(0).getOptimisationProblem(); for (Particle current : topology) { current.calculateFitness(); for (Particle other : pso.getNeighbourhood().f(topology, current)) { Particle p1 = current.getNeighbourhoodBest().getClone(); Particle p2 = other.getNeighbourhoodBest().getClone(); OptimisationSolution s1 = new OptimisationSolution(p1.getCandidateSolution().getClone(), problem.getFitness(p1.getCandidateSolution().getClone())); OptimisationSolution s2 = new OptimisationSolution(p2.getCandidateSolution().getClone(), problem.getFitness(p2.getCandidateSolution().getClone())); MOFitness fitness1 = (MOFitness)s1.getFitness(); MOFitness fitness2 = (MOFitness)s2.getFitness(); if (fitness1.compareTo(fitness2) > 0) { other.setNeighbourhoodBest(current); // TODO: neighbourhood visitor? } else if (fitness1.compareTo(fitness2) == 0) { int random = Rand.nextInt(20); if (random > 10) other.setNeighbourhoodBest(current); } } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy