All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.clementlevallois.utils.DiffSpelling Maven / Gradle / Ivy

///*
// * Diff Match and Patch
// *
// * Copyright 2006 Google Inc.
// * http://code.google.com/p/google-diff-match-patch/
// *
// * Licensed under the Apache License, Version 2.0 (the "License");
// * you may not use this file except in compliance with the License.
// * You may obtain a copy of the License at
// *
// *   http://www.apache.org/licenses/LICENSE-2.0
// *
// * Unless required by applicable law or agreed to in writing, software
// * distributed under the License is distributed on an "AS IS" BASIS,
// * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// * See the License for the specific language governing permissions and
// * limitations under the License.
// */
//package net.clementlevallois.utils;
//
//import java.io.UnsupportedEncodingException;
//import java.net.URLDecoder;
//import java.net.URLEncoder;
//import java.util.ArrayList;
//import java.util.Arrays;
//import java.util.HashMap;
//import java.util.LinkedList;
//import java.util.List;
//import java.util.ListIterator;
//import java.util.Map;
//import java.util.Stack;
//import java.util.regex.Matcher;
//import java.util.regex.Pattern;
//
///*
// * Functions for diff, match and patch.
// * Computes the difference between two texts to create a patch.
// * Applies the patch onto another text, allowing for errors.
// *
// * @author [email protected] (Neil Fraser)
// */
///**
// * Class containing the diff, match and patch methods. Also contains the
// * behaviour settings.
// */
//public class DiffSpelling {
//
//    // Defaults.
//    // Set these on your diff_match_patch instance to override the defaults.
//    /**
//     * Number of seconds to map a diff before giving up (0 for infinity).
//     */
//    public float Diff_Timeout = 1.0f;
//    /**
//     * Cost of an empty edit operation in terms of edit characters.
//     */
//    public short Diff_EditCost = 4;
//    /**
//     * At what point is no match declared (0.0 = perfection, 1.0 = very loose).
//     */
//    public float Match_Threshold = 0.5f;
//    /**
//     * How far to search for a match (0 = exact location, 1000+ = broad match).
//     * A match this many characters away from the expected location will add 1.0
//     * to the score (0.0 is a perfect match).
//     */
//    public int Match_Distance = 1000;
//    /**
//     * When deleting a large block of text (over ~64 characters), how close do
//     * the contents have to be to match the expected contents. (0.0 =
//     * perfection, 1.0 = very loose). Note that Match_Threshold controls how
//     * closely the end points of a delete need to match.
//     */
//    public float Patch_DeleteThreshold = 0.5f;
//    /**
//     * Chunk size for context length.
//     */
//    public short Patch_Margin = 4;
//    /**
//     * The number of bits in an int.
//     */
//    private short Match_MaxBits = 32;
//
//    /**
//     * Internal class for returning results from diff_linesToChars(). Other less
//     * paranoid languages just use a three-element array.
//     */
//    protected static class LinesToCharsResult {
//
//        /**
//         *
//         */
//        protected String chars1;
//
//        /**
//         *
//         */
//        protected String chars2;
//
//        /**
//         *
//         */
//        protected List lineArray;
//
//        /**
//         *
//         * @param chars1
//         * @param chars2
//         * @param lineArray
//         */
//        protected LinesToCharsResult(String chars1, String chars2,
//                List lineArray) {
//            this.chars1 = chars1;
//            this.chars2 = chars2;
//            this.lineArray = lineArray;
//        }
//    }
//
//    //  DIFF FUNCTIONS
//    /**
//     * The data structure representing a diff is a Linked list of Diff objects:
//     * {Diff(Operation.DELETE, "Hello"), Diff(Operation.INSERT, "Goodbye"),
//     * Diff(Operation.EQUAL, " world.")} which means: delete "Hello", add
//     * "Goodbye" and keep " world."
//     */
//    public enum Operation {
//
//        /**
//         *
//         */
//        DELETE,
//
//        /**
//         *
//         */
//        INSERT,
//
//        /**
//         *
//         */
//        EQUAL
//    }
//
//    /**
//     * Find the differences between two texts. Run a faster, slightly less
//     * optimal diff. This method allows the 'checklines' of diff_main() to be
//     * optional. Most of the time checklines is wanted, so default to true.
//     *
//     * @param text1 Old string to be diffed.
//     * @param text2 New string to be diffed.
//     * @return Linked List of Diff objects.
//     */
//    public LinkedList diff_main(String text1, String text2) {
//        return diff_main(text1, text2, true);
//    }
//
//    /**
//     * Find the differences between two texts.
//     *
//     * @param text1 Old string to be diffed.
//     * @param text2 New string to be diffed.
//     * @param checklines Speedup flag. If false, then don't run a line-level
//     * diff first to identify the changed areas. If true, then run a faster
//     * slightly less optimal diff.
//     * @return Linked List of Diff objects.
//     */
//    public LinkedList diff_main(String text1, String text2,
//            boolean checklines) {
//        // Set a deadline by which time the diff must be complete.
//        long deadline;
//        if (Diff_Timeout <= 0) {
//            deadline = Long.MAX_VALUE;
//        } else {
//            deadline = System.currentTimeMillis() + (long) (Diff_Timeout * 1000);
//        }
//        return diff_main(text1, text2, checklines, deadline);
//    }
//
//    /**
//     * Find the differences between two texts. Simplifies the problem by
//     * stripping any common prefix or suffix off the texts before diffing.
//     *
//     * @param text1 Old string to be diffed.
//     * @param text2 New string to be diffed.
//     * @param checklines Speedup flag. If false, then don't run a line-level
//     * diff first to identify the changed areas. If true, then run a faster
//     * slightly less optimal diff.
//     * @param deadline Time when the diff should be complete by. Used internally
//     * for recursive calls. Users should set DiffTimeout instead.
//     * @return Linked List of Diff objects.
//     */
//    private LinkedList diff_main(String text1, String text2,
//            boolean checklines, long deadline) {
//        // Check for null inputs.
//        if (text1 == null || text2 == null) {
//            throw new IllegalArgumentException("Null inputs. (diff_main)");
//        }
//
//        // Check for equality (speedup).
//        LinkedList diffs;
//        if (text1.equals(text2)) {
//            diffs = new LinkedList();
//            if (text1.length() != 0) {
//                diffs.add(new Diff(Operation.EQUAL, text1));
//            }
//            return diffs;
//        }
//
//        // Trim off common prefix (speedup).
//        int commonlength = diff_commonPrefix(text1, text2);
//        String commonprefix = text1.substring(0, commonlength);
//        text1 = text1.substring(commonlength);
//        text2 = text2.substring(commonlength);
//
//        // Trim off common suffix (speedup).
//        commonlength = diff_commonSuffix(text1, text2);
//        String commonsuffix = text1.substring(text1.length() - commonlength);
//        text1 = text1.substring(0, text1.length() - commonlength);
//        text2 = text2.substring(0, text2.length() - commonlength);
//
//        // Compute the diff on the middle block.
//        diffs = diff_compute(text1, text2, checklines, deadline);
//
//        // Restore the prefix and suffix.
//        if (commonprefix.length() != 0) {
//            diffs.addFirst(new Diff(Operation.EQUAL, commonprefix));
//        }
//        if (commonsuffix.length() != 0) {
//            diffs.addLast(new Diff(Operation.EQUAL, commonsuffix));
//        }
//
//        diff_cleanupMerge(diffs);
//        return diffs;
//    }
//
//    /**
//     * Find the differences between two texts. Assumes that the texts do not
//     * have any common prefix or suffix.
//     *
//     * @param text1 Old string to be diffed.
//     * @param text2 New string to be diffed.
//     * @param checklines Speedup flag. If false, then don't run a line-level
//     * diff first to identify the changed areas. If true, then run a faster
//     * slightly less optimal diff.
//     * @param deadline Time when the diff should be complete by.
//     * @return Linked List of Diff objects.
//     */
//    private LinkedList diff_compute(String text1, String text2,
//            boolean checklines, long deadline) {
//        LinkedList diffs = new LinkedList();
//
//        if (text1.length() == 0) {
//            // Just add some text (speedup).
//            diffs.add(new Diff(Operation.INSERT, text2));
//            return diffs;
//        }
//
//        if (text2.length() == 0) {
//            // Just delete some text (speedup).
//            diffs.add(new Diff(Operation.DELETE, text1));
//            return diffs;
//        }
//
//        {
//            // New scope so as to garbage collect longtext and shorttext.
//            String longtext = text1.length() > text2.length() ? text1 : text2;
//            String shorttext = text1.length() > text2.length() ? text2 : text1;
//            int i = longtext.indexOf(shorttext);
//            if (i != -1) {
//                // Shorter text is inside the longer text (speedup).
//                Operation op = (text1.length() > text2.length())
//                        ? Operation.DELETE : Operation.INSERT;
//                diffs.add(new Diff(op, longtext.substring(0, i)));
//                diffs.add(new Diff(Operation.EQUAL, shorttext));
//                diffs.add(new Diff(op, longtext.substring(i + shorttext.length())));
//                return diffs;
//            }
//
//            if (shorttext.length() == 1) {
//                // Single character string.
//                // After the previous speedup, the character can't be an equality.
//                diffs.add(new Diff(Operation.DELETE, text1));
//                diffs.add(new Diff(Operation.INSERT, text2));
//                return diffs;
//            }
//        }
//
//        // Check to see if the problem can be split in two.
//        String[] hm = diff_halfMatch(text1, text2);
//        if (hm != null) {
//            // A half-match was found, sort out the return data.
//            String text1_a = hm[0];
//            String text1_b = hm[1];
//            String text2_a = hm[2];
//            String text2_b = hm[3];
//            String mid_common = hm[4];
//            // Send both pairs off for separate processing.
//            LinkedList diffs_a = diff_main(text1_a, text2_a,
//                    checklines, deadline);
//            LinkedList diffs_b = diff_main(text1_b, text2_b,
//                    checklines, deadline);
//            // Merge the results.
//            diffs = diffs_a;
//            diffs.add(new Diff(Operation.EQUAL, mid_common));
//            diffs.addAll(diffs_b);
//            return diffs;
//        }
//
//        if (checklines && text1.length() > 100 && text2.length() > 100) {
//            return diff_lineMode(text1, text2, deadline);
//        }
//
//        return diff_bisect(text1, text2, deadline);
//    }
//
//    /**
//     * Do a quick line-level diff on both strings, then rediff the parts for
//     * greater accuracy. This speedup can produce non-minimal diffs.
//     *
//     * @param text1 Old string to be diffed.
//     * @param text2 New string to be diffed.
//     * @param deadline Time when the diff should be complete by.
//     * @return Linked List of Diff objects.
//     */
//    private LinkedList diff_lineMode(String text1, String text2,
//            long deadline) {
//        // Scan the text on a line-by-line basis first.
//        LinesToCharsResult b = diff_linesToChars(text1, text2);
//        text1 = b.chars1;
//        text2 = b.chars2;
//        List linearray = b.lineArray;
//
//        LinkedList diffs = diff_main(text1, text2, false, deadline);
//
//        // Convert the diff back to original text.
//        diff_charsToLines(diffs, linearray);
//        // Eliminate freak matches (e.g. blank lines)
//        diff_cleanupSemantic(diffs);
//
//        // Rediff any replacement blocks, this time character-by-character.
//        // Add a dummy entry at the end.
//        diffs.add(new Diff(Operation.EQUAL, ""));
//        int count_delete = 0;
//        int count_insert = 0;
//        String text_delete = "";
//        String text_insert = "";
//        ListIterator pointer = diffs.listIterator();
//        Diff thisDiff = pointer.next();
//        while (thisDiff != null) {
//            switch (thisDiff.operation) {
//                case INSERT:
//                    count_insert++;
//                    text_insert += thisDiff.text;
//                    break;
//                case DELETE:
//                    count_delete++;
//                    text_delete += thisDiff.text;
//                    break;
//                case EQUAL:
//                    // Upon reaching an equality, check for prior redundancies.
//                    if (count_delete >= 1 && count_insert >= 1) {
//                        // Delete the offending records and add the merged ones.
//                        pointer.previous();
//                        for (int j = 0; j < count_delete + count_insert; j++) {
//                            pointer.previous();
//                            pointer.remove();
//                        }
//                        for (Diff newDiff : diff_main(text_delete, text_insert, false,
//                                deadline)) {
//                            pointer.add(newDiff);
//                        }
//                    }
//                    count_insert = 0;
//                    count_delete = 0;
//                    text_delete = "";
//                    text_insert = "";
//                    break;
//            }
//            thisDiff = pointer.hasNext() ? pointer.next() : null;
//        }
//        diffs.removeLast();  // Remove the dummy entry at the end.
//
//        return diffs;
//    }
//
//    /**
//     * Find the 'middle snake' of a diff, split the problem in two and return
//     * the recursively constructed diff. See Myers 1986 paper: An O(ND)
//     * Difference Algorithm and Its Variations.
//     *
//     * @param text1 Old string to be diffed.
//     * @param text2 New string to be diffed.
//     * @param deadline Time at which to bail if not yet complete.
//     * @return LinkedList of Diff objects.
//     */
//    protected LinkedList diff_bisect(String text1, String text2,
//            long deadline) {
//        // Cache the text lengths to prevent multiple calls.
//        int text1_length = text1.length();
//        int text2_length = text2.length();
//        int max_d = (text1_length + text2_length + 1) / 2;
//        int v_offset = max_d;
//        int v_length = 2 * max_d;
//        int[] v1 = new int[v_length];
//        int[] v2 = new int[v_length];
//        for (int x = 0; x < v_length; x++) {
//            v1[x] = -1;
//            v2[x] = -1;
//        }
//        v1[v_offset + 1] = 0;
//        v2[v_offset + 1] = 0;
//        int delta = text1_length - text2_length;
//        // If the total number of characters is odd, then the front path will
//        // collide with the reverse path.
//        boolean front = (delta % 2 != 0);
//        // Offsets for start and end of k loop.
//        // Prevents mapping of space beyond the grid.
//        int k1start = 0;
//        int k1end = 0;
//        int k2start = 0;
//        int k2end = 0;
//        for (int d = 0; d < max_d; d++) {
//            // Bail out if deadline is reached.
//            if (System.currentTimeMillis() > deadline) {
//                break;
//            }
//
//            // Walk the front path one step.
//            for (int k1 = -d + k1start; k1 <= d - k1end; k1 += 2) {
//                int k1_offset = v_offset + k1;
//                int x1;
//                if (k1 == -d || (k1 != d && v1[k1_offset - 1] < v1[k1_offset + 1])) {
//                    x1 = v1[k1_offset + 1];
//                } else {
//                    x1 = v1[k1_offset - 1] + 1;
//                }
//                int y1 = x1 - k1;
//                while (x1 < text1_length && y1 < text2_length
//                        && text1.charAt(x1) == text2.charAt(y1)) {
//                    x1++;
//                    y1++;
//                }
//                v1[k1_offset] = x1;
//                if (x1 > text1_length) {
//                    // Ran off the right of the graph.
//                    k1end += 2;
//                } else if (y1 > text2_length) {
//                    // Ran off the bottom of the graph.
//                    k1start += 2;
//                } else if (front) {
//                    int k2_offset = v_offset + delta - k1;
//                    if (k2_offset >= 0 && k2_offset < v_length && v2[k2_offset] != -1) {
//                        // Mirror x2 onto top-left coordinate system.
//                        int x2 = text1_length - v2[k2_offset];
//                        if (x1 >= x2) {
//                            // Overlap detected.
//                            return diff_bisectSplit(text1, text2, x1, y1, deadline);
//                        }
//                    }
//                }
//            }
//
//            // Walk the reverse path one step.
//            for (int k2 = -d + k2start; k2 <= d - k2end; k2 += 2) {
//                int k2_offset = v_offset + k2;
//                int x2;
//                if (k2 == -d || (k2 != d && v2[k2_offset - 1] < v2[k2_offset + 1])) {
//                    x2 = v2[k2_offset + 1];
//                } else {
//                    x2 = v2[k2_offset - 1] + 1;
//                }
//                int y2 = x2 - k2;
//                while (x2 < text1_length && y2 < text2_length
//                        && text1.charAt(text1_length - x2 - 1)
//                        == text2.charAt(text2_length - y2 - 1)) {
//                    x2++;
//                    y2++;
//                }
//                v2[k2_offset] = x2;
//                if (x2 > text1_length) {
//                    // Ran off the left of the graph.
//                    k2end += 2;
//                } else if (y2 > text2_length) {
//                    // Ran off the top of the graph.
//                    k2start += 2;
//                } else if (!front) {
//                    int k1_offset = v_offset + delta - k2;
//                    if (k1_offset >= 0 && k1_offset < v_length && v1[k1_offset] != -1) {
//                        int x1 = v1[k1_offset];
//                        int y1 = v_offset + x1 - k1_offset;
//                        // Mirror x2 onto top-left coordinate system.
//                        x2 = text1_length - x2;
//                        if (x1 >= x2) {
//                            // Overlap detected.
//                            return diff_bisectSplit(text1, text2, x1, y1, deadline);
//                        }
//                    }
//                }
//            }
//        }
//        // Diff took too long and hit the deadline or
//        // number of diffs equals number of characters, no commonality at all.
//        LinkedList diffs = new LinkedList();
//        diffs.add(new Diff(Operation.DELETE, text1));
//        diffs.add(new Diff(Operation.INSERT, text2));
//        return diffs;
//    }
//
//    /**
//     * Given the location of the 'middle snake', split the diff in two parts and
//     * recurse.
//     *
//     * @param text1 Old string to be diffed.
//     * @param text2 New string to be diffed.
//     * @param x Index of split point in text1.
//     * @param y Index of split point in text2.
//     * @param deadline Time at which to bail if not yet complete.
//     * @return LinkedList of Diff objects.
//     */
//    private LinkedList diff_bisectSplit(String text1, String text2,
//            int x, int y, long deadline) {
//        String text1a = text1.substring(0, x);
//        String text2a = text2.substring(0, y);
//        String text1b = text1.substring(x);
//        String text2b = text2.substring(y);
//
//        // Compute both diffs serially.
//        LinkedList diffs = diff_main(text1a, text2a, false, deadline);
//        LinkedList diffsb = diff_main(text1b, text2b, false, deadline);
//
//        diffs.addAll(diffsb);
//        return diffs;
//    }
//
//    /**
//     * Split two texts into a list of strings. Reduce the texts to a string of
//     * hashes where each Unicode character represents one line.
//     *
//     * @param text1 First string.
//     * @param text2 Second string.
//     * @return An object containing the encoded text1, the encoded text2 and the
//     * List of unique strings. The zeroth element of the List of unique strings
//     * is intentionally blank.
//     */
//    protected LinesToCharsResult diff_linesToChars(String text1, String text2) {
//        List lineArray = new ArrayList();
//        Map lineHash = new HashMap();
//        // e.g. linearray[4] == "Hello\n"
//        // e.g. linehash.get("Hello\n") == 4
//
//        // "\x00" is a valid character, but various debuggers don't like it.
//        // So we'll insert a junk entry to avoid generating a null character.
//        lineArray.add("");
//
//        String chars1 = diff_linesToCharsMunge(text1, lineArray, lineHash);
//        String chars2 = diff_linesToCharsMunge(text2, lineArray, lineHash);
//        return new LinesToCharsResult(chars1, chars2, lineArray);
//    }
//
//    /**
//     * Split a text into a list of strings. Reduce the texts to a string of
//     * hashes where each Unicode character represents one line.
//     *
//     * @param text String to encode.
//     * @param lineArray List of unique strings.
//     * @param lineHash Map of strings to indices.
//     * @return Encoded string.
//     */
//    private String diff_linesToCharsMunge(String text, List lineArray,
//            Map lineHash) {
//        int lineStart = 0;
//        int lineEnd = -1;
//        String line;
//        StringBuilder chars = new StringBuilder();
//        // Walk the text, pulling out a substring for each line.
//        // text.split('\n') would would temporarily double our memory footprint.
//        // Modifying text would create many large strings to garbage collect.
//        while (lineEnd < text.length() - 1) {
//            lineEnd = text.indexOf('\n', lineStart);
//            if (lineEnd == -1) {
//                lineEnd = text.length() - 1;
//            }
//            line = text.substring(lineStart, lineEnd + 1);
//            lineStart = lineEnd + 1;
//
//            if (lineHash.containsKey(line)) {
//                chars.append(String.valueOf((char) (int) lineHash.get(line)));
//            } else {
//                lineArray.add(line);
//                lineHash.put(line, lineArray.size() - 1);
//                chars.append(String.valueOf((char) (lineArray.size() - 1)));
//            }
//        }
//        return chars.toString();
//    }
//
//    /**
//     * Rehydrate the text in a diff from a string of line hashes to real lines
//     * of text.
//     *
//     * @param diffs LinkedList of Diff objects.
//     * @param lineArray List of unique strings.
//     */
//    protected void diff_charsToLines(LinkedList diffs,
//            List lineArray) {
//        StringBuilder text;
//        for (Diff diff : diffs) {
//            text = new StringBuilder();
//            for (int y = 0; y < diff.text.length(); y++) {
//                text.append(lineArray.get(diff.text.charAt(y)));
//            }
//            diff.text = text.toString();
//        }
//    }
//
//    /**
//     * Determine the common prefix of two strings
//     *
//     * @param text1 First string.
//     * @param text2 Second string.
//     * @return The number of characters common to the start of each string.
//     */
//    public int diff_commonPrefix(String text1, String text2) {
//        // Performance analysis: http://neil.fraser.name/news/2007/10/09/
//        int n = Math.min(text1.length(), text2.length());
//        for (int i = 0; i < n; i++) {
//            if (text1.charAt(i) != text2.charAt(i)) {
//                return i;
//            }
//        }
//        return n;
//    }
//
//    /**
//     * Determine the common suffix of two strings
//     *
//     * @param text1 First string.
//     * @param text2 Second string.
//     * @return The number of characters common to the end of each string.
//     */
//    public int diff_commonSuffix(String text1, String text2) {
//        // Performance analysis: http://neil.fraser.name/news/2007/10/09/
//        int text1_length = text1.length();
//        int text2_length = text2.length();
//        int n = Math.min(text1_length, text2_length);
//        for (int i = 1; i <= n; i++) {
//            if (text1.charAt(text1_length - i) != text2.charAt(text2_length - i)) {
//                return i - 1;
//            }
//        }
//        return n;
//    }
//
//    /**
//     * Determine if the suffix of one string is the prefix of another.
//     *
//     * @param text1 First string.
//     * @param text2 Second string.
//     * @return The number of characters common to the end of the first string
//     * and the start of the second string.
//     */
//    protected int diff_commonOverlap(String text1, String text2) {
//        // Cache the text lengths to prevent multiple calls.
//        int text1_length = text1.length();
//        int text2_length = text2.length();
//        // Eliminate the null case.
//        if (text1_length == 0 || text2_length == 0) {
//            return 0;
//        }
//        // Truncate the longer string.
//        if (text1_length > text2_length) {
//            text1 = text1.substring(text1_length - text2_length);
//        } else if (text1_length < text2_length) {
//            text2 = text2.substring(0, text1_length);
//        }
//        int text_length = Math.min(text1_length, text2_length);
//        // Quick check for the worst case.
//        if (text1.equals(text2)) {
//            return text_length;
//        }
//
//        // Start by looking for a single character match
//        // and increase length until no match is found.
//        // Performance analysis: http://neil.fraser.name/news/2010/11/04/
//        int best = 0;
//        int length = 1;
//        while (true) {
//            String pattern = text1.substring(text_length - length);
//            int found = text2.indexOf(pattern);
//            if (found == -1) {
//                return best;
//            }
//            length += found;
//            if (found == 0 || text1.substring(text_length - length).equals(
//                    text2.substring(0, length))) {
//                best = length;
//                length++;
//            }
//        }
//    }
//
//    /**
//     * Do the two texts share a substring which is at least half the length of
//     * the longer text? This speedup can produce non-minimal diffs.
//     *
//     * @param text1 First string.
//     * @param text2 Second string.
//     * @return Five element String array, containing the prefix of text1, the
//     * suffix of text1, the prefix of text2, the suffix of text2 and the common
//     * middle. Or null if there was no match.
//     */
//    protected String[] diff_halfMatch(String text1, String text2) {
//        if (Diff_Timeout <= 0) {
//            // Don't risk returning a non-optimal diff if we have unlimited time.
//            return null;
//        }
//        String longtext = text1.length() > text2.length() ? text1 : text2;
//        String shorttext = text1.length() > text2.length() ? text2 : text1;
//        if (longtext.length() < 4 || shorttext.length() * 2 < longtext.length()) {
//            return null;  // Pointless.
//        }
//
//        // First check if the second quarter is the seed for a half-match.
//        String[] hm1 = diff_halfMatchI(longtext, shorttext,
//                (longtext.length() + 3) / 4);
//        // Check again based on the third quarter.
//        String[] hm2 = diff_halfMatchI(longtext, shorttext,
//                (longtext.length() + 1) / 2);
//        String[] hm;
//        if (hm1 == null && hm2 == null) {
//            return null;
//        } else if (hm2 == null) {
//            hm = hm1;
//        } else if (hm1 == null) {
//            hm = hm2;
//        } else {
//            // Both matched.  Select the longest.
//            hm = hm1[4].length() > hm2[4].length() ? hm1 : hm2;
//        }
//
//        // A half-match was found, sort out the return data.
//        if (text1.length() > text2.length()) {
//            return hm;
//            //return new String[]{hm[0], hm[1], hm[2], hm[3], hm[4]};
//        } else {
//            return new String[]{hm[2], hm[3], hm[0], hm[1], hm[4]};
//        }
//    }
//
//    /**
//     * Does a substring of shorttext exist within longtext such that the
//     * substring is at least half the length of longtext?
//     *
//     * @param longtext Longer string.
//     * @param shorttext Shorter string.
//     * @param i Start index of quarter length substring within longtext.
//     * @return Five element String array, containing the prefix of longtext, the
//     * suffix of longtext, the prefix of shorttext, the suffix of shorttext and
//     * the common middle. Or null if there was no match.
//     */
//    private String[] diff_halfMatchI(String longtext, String shorttext, int i) {
//        // Start with a 1/4 length substring at position i as a seed.
//        String seed = longtext.substring(i, i + longtext.length() / 4);
//        int j = -1;
//        String best_common = "";
//        String best_longtext_a = "", best_longtext_b = "";
//        String best_shorttext_a = "", best_shorttext_b = "";
//        while ((j = shorttext.indexOf(seed, j + 1)) != -1) {
//            int prefixLength = diff_commonPrefix(longtext.substring(i),
//                    shorttext.substring(j));
//            int suffixLength = diff_commonSuffix(longtext.substring(0, i),
//                    shorttext.substring(0, j));
//            if (best_common.length() < suffixLength + prefixLength) {
//                best_common = shorttext.substring(j - suffixLength, j)
//                        + shorttext.substring(j, j + prefixLength);
//                best_longtext_a = longtext.substring(0, i - suffixLength);
//                best_longtext_b = longtext.substring(i + prefixLength);
//                best_shorttext_a = shorttext.substring(0, j - suffixLength);
//                best_shorttext_b = shorttext.substring(j + prefixLength);
//            }
//        }
//        if (best_common.length() * 2 >= longtext.length()) {
//            return new String[]{best_longtext_a, best_longtext_b,
//                        best_shorttext_a, best_shorttext_b, best_common};
//        } else {
//            return null;
//        }
//    }
//
//    /**
//     * Reduce the number of edits by eliminating semantically trivial
//     * equalities.
//     *
//     * @param diffs LinkedList of Diff objects.
//     */
//    public void diff_cleanupSemantic(LinkedList diffs) {
//        if (diffs.isEmpty()) {
//            return;
//        }
//        boolean changes = false;
//        Stack equalities = new Stack();  // Stack of qualities.
//        String lastequality = null; // Always equal to equalities.lastElement().text
//        ListIterator pointer = diffs.listIterator();
//        // Number of characters that changed prior to the equality.
//        int length_insertions1 = 0;
//        int length_deletions1 = 0;
//        // Number of characters that changed after the equality.
//        int length_insertions2 = 0;
//        int length_deletions2 = 0;
//        Diff thisDiff = pointer.next();
//        while (thisDiff != null) {
//            if (thisDiff.operation == Operation.EQUAL) {
//                // Equality found.
//                equalities.push(thisDiff);
//                length_insertions1 = length_insertions2;
//                length_deletions1 = length_deletions2;
//                length_insertions2 = 0;
//                length_deletions2 = 0;
//                lastequality = thisDiff.text;
//            } else {
//                // An insertion or deletion.
//                if (thisDiff.operation == Operation.INSERT) {
//                    length_insertions2 += thisDiff.text.length();
//                } else {
//                    length_deletions2 += thisDiff.text.length();
//                }
//                // Eliminate an equality that is smaller or equal to the edits on both
//                // sides of it.
//                if (lastequality != null && (lastequality.length()
//                        <= Math.max(length_insertions1, length_deletions1))
//                        && (lastequality.length()
//                        <= Math.max(length_insertions2, length_deletions2))) {
//                    //System.out.println("Splitting: '" + lastequality + "'");
//                    // Walk back to offending equality.
//                    while (thisDiff != equalities.lastElement()) {
//                        thisDiff = pointer.previous();
//                    }
//                    pointer.next();
//
//                    // Replace equality with a delete.
//                    pointer.set(new Diff(Operation.DELETE, lastequality));
//                    // Insert a corresponding an insert.
//                    pointer.add(new Diff(Operation.INSERT, lastequality));
//
//                    equalities.pop();  // Throw away the equality we just deleted.
//                    if (!equalities.empty()) {
//                        // Throw away the previous equality (it needs to be reevaluated).
//                        equalities.pop();
//                    }
//                    if (equalities.empty()) {
//                        // There are no previous equalities, walk back to the start.
//                        while (pointer.hasPrevious()) {
//                            pointer.previous();
//                        }
//                    } else {
//                        // There is a safe equality we can fall back to.
//                        thisDiff = equalities.lastElement();
//                        while (thisDiff != pointer.previous()) {
//                            // Intentionally empty loop.
//                        }
//                    }
//
//                    length_insertions1 = 0;  // Reset the counters.
//                    length_insertions2 = 0;
//                    length_deletions1 = 0;
//                    length_deletions2 = 0;
//                    lastequality = null;
//                    changes = true;
//                }
//            }
//            thisDiff = pointer.hasNext() ? pointer.next() : null;
//        }
//
//        // Normalize the diff.
//        if (changes) {
//            diff_cleanupMerge(diffs);
//        }
//        diff_cleanupSemanticLossless(diffs);
//
//        // Find any overlaps between deletions and insertions.
//        // e.g: abcxxxxxxdef
//        //   -> abcxxxdef
//        // e.g: xxxabcdefxxx
//        //   -> defxxxabc
//        // Only extract an overlap if it is as big as the edit ahead or behind it.
//        pointer = diffs.listIterator();
//        Diff prevDiff = null;
//        thisDiff = null;
//        if (pointer.hasNext()) {
//            prevDiff = pointer.next();
//            if (pointer.hasNext()) {
//                thisDiff = pointer.next();
//            }
//        }
//        while (thisDiff != null) {
//            if (prevDiff.operation == Operation.DELETE
//                    && thisDiff.operation == Operation.INSERT) {
//                String deletion = prevDiff.text;
//                String insertion = thisDiff.text;
//                int overlap_length1 = this.diff_commonOverlap(deletion, insertion);
//                int overlap_length2 = this.diff_commonOverlap(insertion, deletion);
//                if (overlap_length1 >= overlap_length2) {
//                    if (overlap_length1 >= deletion.length() / 2.0
//                            || overlap_length1 >= insertion.length() / 2.0) {
//                        // Overlap found.  Insert an equality and trim the surrounding edits.
//                        pointer.previous();
//                        pointer.add(new Diff(Operation.EQUAL,
//                                insertion.substring(0, overlap_length1)));
//                        prevDiff.text =
//                                deletion.substring(0, deletion.length() - overlap_length1);
//                        thisDiff.text = insertion.substring(overlap_length1);
//                        // pointer.add inserts the element before the cursor, so there is
//                        // no need to step past the new element.
//                    }
//                } else {
//                    if (overlap_length2 >= deletion.length() / 2.0
//                            || overlap_length2 >= insertion.length() / 2.0) {
//                        // Reverse overlap found.
//                        // Insert an equality and swap and trim the surrounding edits.
//                        pointer.previous();
//                        pointer.add(new Diff(Operation.EQUAL,
//                                deletion.substring(0, overlap_length2)));
//                        prevDiff.operation = Operation.INSERT;
//                        prevDiff.text =
//                                insertion.substring(0, insertion.length() - overlap_length2);
//                        thisDiff.operation = Operation.DELETE;
//                        thisDiff.text = deletion.substring(overlap_length2);
//                        // pointer.add inserts the element before the cursor, so there is
//                        // no need to step past the new element.
//                    }
//                }
//                thisDiff = pointer.hasNext() ? pointer.next() : null;
//            }
//            prevDiff = thisDiff;
//            thisDiff = pointer.hasNext() ? pointer.next() : null;
//        }
//    }
//
//    /**
//     * Look for single edits surrounded on both sides by equalities which can be
//     * shifted sideways to align the edit to a word boundary. e.g: The cat
//     * came. -> The cat came.
//     *
//     * @param diffs LinkedList of Diff objects.
//     */
//    public void diff_cleanupSemanticLossless(LinkedList diffs) {
//        String equality1, edit, equality2;
//        String commonString;
//        int commonOffset;
//        int score, bestScore;
//        String bestEquality1, bestEdit, bestEquality2;
//        // Create a new iterator at the start.
//        ListIterator pointer = diffs.listIterator();
//        Diff prevDiff = pointer.hasNext() ? pointer.next() : null;
//        Diff thisDiff = pointer.hasNext() ? pointer.next() : null;
//        Diff nextDiff = pointer.hasNext() ? pointer.next() : null;
//        // Intentionally ignore the first and last element (don't need checking).
//        while (nextDiff != null) {
//            if (prevDiff.operation == Operation.EQUAL
//                    && nextDiff.operation == Operation.EQUAL) {
//                // This is a single edit surrounded by equalities.
//                equality1 = prevDiff.text;
//                edit = thisDiff.text;
//                equality2 = nextDiff.text;
//
//                // First, shift the edit as far left as possible.
//                commonOffset = diff_commonSuffix(equality1, edit);
//                if (commonOffset != 0) {
//                    commonString = edit.substring(edit.length() - commonOffset);
//                    equality1 = equality1.substring(0, equality1.length() - commonOffset);
//                    edit = commonString + edit.substring(0, edit.length() - commonOffset);
//                    equality2 = commonString + equality2;
//                }
//
//                // Second, step character by character right, looking for the best fit.
//                bestEquality1 = equality1;
//                bestEdit = edit;
//                bestEquality2 = equality2;
//                bestScore = diff_cleanupSemanticScore(equality1, edit)
//                        + diff_cleanupSemanticScore(edit, equality2);
//                while (edit.length() != 0 && equality2.length() != 0
//                        && edit.charAt(0) == equality2.charAt(0)) {
//                    equality1 += edit.charAt(0);
//                    edit = edit.substring(1) + equality2.charAt(0);
//                    equality2 = equality2.substring(1);
//                    score = diff_cleanupSemanticScore(equality1, edit)
//                            + diff_cleanupSemanticScore(edit, equality2);
//                    // The >= encourages trailing rather than leading whitespace on edits.
//                    if (score >= bestScore) {
//                        bestScore = score;
//                        bestEquality1 = equality1;
//                        bestEdit = edit;
//                        bestEquality2 = equality2;
//                    }
//                }
//
//                if (!prevDiff.text.equals(bestEquality1)) {
//                    // We have an improvement, save it back to the diff.
//                    if (bestEquality1.length() != 0) {
//                        prevDiff.text = bestEquality1;
//                    } else {
//                        pointer.previous(); // Walk past nextDiff.
//                        pointer.previous(); // Walk past thisDiff.
//                        pointer.previous(); // Walk past prevDiff.
//                        pointer.remove(); // Delete prevDiff.
//                        pointer.next(); // Walk past thisDiff.
//                        pointer.next(); // Walk past nextDiff.
//                    }
//                    thisDiff.text = bestEdit;
//                    if (bestEquality2.length() != 0) {
//                        nextDiff.text = bestEquality2;
//                    } else {
//                        pointer.remove(); // Delete nextDiff.
//                        nextDiff = thisDiff;
//                        thisDiff = prevDiff;
//                    }
//                }
//            }
//            prevDiff = thisDiff;
//            thisDiff = nextDiff;
//            nextDiff = pointer.hasNext() ? pointer.next() : null;
//        }
//    }
//
//    /**
//     * Given two strings, compute a score representing whether the internal
//     * boundary falls on logical boundaries. Scores range from 6 (best) to 0
//     * (worst).
//     *
//     * @param one First string.
//     * @param two Second string.
//     * @return The score.
//     */
//    private int diff_cleanupSemanticScore(String one, String two) {
//        if (one.length() == 0 || two.length() == 0) {
//            // Edges are the best.
//            return 6;
//        }
//
//        // Each port of this function behaves slightly differently due to
//        // subtle differences in each language's definition of things like
//        // 'whitespace'.  Since this function's purpose is largely cosmetic,
//        // the choice has been made to use each language's native features
//        // rather than force total conformity.
//        char char1 = one.charAt(one.length() - 1);
//        char char2 = two.charAt(0);
//        boolean nonAlphaNumeric1 = !Character.isLetterOrDigit(char1);
//        boolean nonAlphaNumeric2 = !Character.isLetterOrDigit(char2);
//        boolean whitespace1 = nonAlphaNumeric1 && Character.isWhitespace(char1);
//        boolean whitespace2 = nonAlphaNumeric2 && Character.isWhitespace(char2);
//        boolean lineBreak1 = whitespace1
//                && Character.getType(char1) == Character.CONTROL;
//        boolean lineBreak2 = whitespace2
//                && Character.getType(char2) == Character.CONTROL;
//        boolean blankLine1 = lineBreak1 && BLANKLINEEND.matcher(one).find();
//        boolean blankLine2 = lineBreak2 && BLANKLINESTART.matcher(two).find();
//
//        if (blankLine1 || blankLine2) {
//            // Five points for blank lines.
//            return 5;
//        } else if (lineBreak1 || lineBreak2) {
//            // Four points for line breaks.
//            return 4;
//        } else if (nonAlphaNumeric1 && !whitespace1 && whitespace2) {
//            // Three points for end of sentences.
//            return 3;
//        } else if (whitespace1 || whitespace2) {
//            // Two points for whitespace.
//            return 2;
//        } else if (nonAlphaNumeric1 || nonAlphaNumeric2) {
//            // One point for non-alphanumeric.
//            return 1;
//        }
//        return 0;
//    }
//    // Define some regex patterns for matching boundaries.
//    private Pattern BLANKLINEEND = Pattern.compile("\\n\\r?\\n\\Z", Pattern.DOTALL);
//    private Pattern BLANKLINESTART = Pattern.compile("\\A\\r?\\n\\r?\\n", Pattern.DOTALL);
//
//    /**
//     * Reduce the number of edits by eliminating operationally trivial
//     * equalities.
//     *
//     * @param diffs LinkedList of Diff objects.
//     */
//    public void diff_cleanupEfficiency(LinkedList diffs) {
//        if (diffs.isEmpty()) {
//            return;
//        }
//        boolean changes = false;
//        Stack equalities = new Stack();  // Stack of equalities.
//        String lastequality = null; // Always equal to equalities.lastElement().text
//        ListIterator pointer = diffs.listIterator();
//        // Is there an insertion operation before the last equality.
//        boolean pre_ins = false;
//        // Is there a deletion operation before the last equality.
//        boolean pre_del = false;
//        // Is there an insertion operation after the last equality.
//        boolean post_ins = false;
//        // Is there a deletion operation after the last equality.
//        boolean post_del = false;
//        Diff thisDiff = pointer.next();
//        Diff safeDiff = thisDiff;  // The last Diff that is known to be unsplitable.
//        while (thisDiff != null) {
//            if (thisDiff.operation == Operation.EQUAL) {
//                // Equality found.
//                if (thisDiff.text.length() < Diff_EditCost && (post_ins || post_del)) {
//                    // Candidate found.
//                    equalities.push(thisDiff);
//                    pre_ins = post_ins;
//                    pre_del = post_del;
//                    lastequality = thisDiff.text;
//                } else {
//                    // Not a candidate, and can never become one.
//                    equalities.clear();
//                    lastequality = null;
//                    safeDiff = thisDiff;
//                }
//                post_ins = post_del = false;
//            } else {
//                // An insertion or deletion.
//                if (thisDiff.operation == Operation.DELETE) {
//                    post_del = true;
//                } else {
//                    post_ins = true;
//                }
//                /*
//                 * Five types to be split:
//                 * ABXYCD
//                 * AXCD
//                 * ABXC
//                 * AXCD
//                 * ABXC
//                 */
//                if (lastequality != null
//                        && ((pre_ins && pre_del && post_ins && post_del)
//                        || ((lastequality.length() < Diff_EditCost / 2)
//                        && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0)
//                        + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) {
//                    //System.out.println("Splitting: '" + lastequality + "'");
//                    // Walk back to offending equality.
//                    while (thisDiff != equalities.lastElement()) {
//                        thisDiff = pointer.previous();
//                    }
//                    pointer.next();
//
//                    // Replace equality with a delete.
//                    pointer.set(new Diff(Operation.DELETE, lastequality));
//                    // Insert a corresponding an insert.
//                    pointer.add(thisDiff = new Diff(Operation.INSERT, lastequality));
//
//                    equalities.pop();  // Throw away the equality we just deleted.
//                    lastequality = null;
//                    if (pre_ins && pre_del) {
//                        // No changes made which could affect previous entry, keep going.
//                        post_ins = post_del = true;
//                        equalities.clear();
//                        safeDiff = thisDiff;
//                    } else {
//                        if (!equalities.empty()) {
//                            // Throw away the previous equality (it needs to be reevaluated).
//                            equalities.pop();
//                        }
//                        if (equalities.empty()) {
//                            // There are no previous questionable equalities,
//                            // walk back to the last known safe diff.
//                            thisDiff = safeDiff;
//                        } else {
//                            // There is an equality we can fall back to.
//                            thisDiff = equalities.lastElement();
//                        }
//                        while (thisDiff != pointer.previous()) {
//                            // Intentionally empty loop.
//                        }
//                        post_ins = post_del = false;
//                    }
//
//                    changes = true;
//                }
//            }
//            thisDiff = pointer.hasNext() ? pointer.next() : null;
//        }
//
//        if (changes) {
//            diff_cleanupMerge(diffs);
//        }
//    }
//
//    /**
//     * Reorder and merge like edit sections. Merge equalities. Any edit section
//     * can move as long as it doesn't cross an equality.
//     *
//     * @param diffs LinkedList of Diff objects.
//     */
//    public void diff_cleanupMerge(LinkedList diffs) {
//        diffs.add(new Diff(Operation.EQUAL, ""));  // Add a dummy entry at the end.
//        ListIterator pointer = diffs.listIterator();
//        int count_delete = 0;
//        int count_insert = 0;
//        String text_delete = "";
//        String text_insert = "";
//        Diff thisDiff = pointer.next();
//        Diff prevEqual = null;
//        int commonlength;
//        while (thisDiff != null) {
//            switch (thisDiff.operation) {
//                case INSERT:
//                    count_insert++;
//                    text_insert += thisDiff.text;
//                    prevEqual = null;
//                    break;
//                case DELETE:
//                    count_delete++;
//                    text_delete += thisDiff.text;
//                    prevEqual = null;
//                    break;
//                case EQUAL:
//                    if (count_delete + count_insert > 1) {
//                        boolean both_types = count_delete != 0 && count_insert != 0;
//                        // Delete the offending records.
//                        pointer.previous();  // Reverse direction.
//                        while (count_delete-- > 0) {
//                            pointer.previous();
//                            pointer.remove();
//                        }
//                        while (count_insert-- > 0) {
//                            pointer.previous();
//                            pointer.remove();
//                        }
//                        if (both_types) {
//                            // Factor out any common prefixies.
//                            commonlength = diff_commonPrefix(text_insert, text_delete);
//                            if (commonlength != 0) {
//                                if (pointer.hasPrevious()) {
//                                    thisDiff = pointer.previous();
//                                    assert thisDiff.operation == Operation.EQUAL : "Previous diff should have been an equality.";
//                                    thisDiff.text += text_insert.substring(0, commonlength);
//                                    pointer.next();
//                                } else {
//                                    pointer.add(new Diff(Operation.EQUAL,
//                                            text_insert.substring(0, commonlength)));
//                                }
//                                text_insert = text_insert.substring(commonlength);
//                                text_delete = text_delete.substring(commonlength);
//                            }
//                            // Factor out any common suffixies.
//                            commonlength = diff_commonSuffix(text_insert, text_delete);
//                            if (commonlength != 0) {
//                                thisDiff = pointer.next();
//                                thisDiff.text = text_insert.substring(text_insert.length()
//                                        - commonlength) + thisDiff.text;
//                                text_insert = text_insert.substring(0, text_insert.length()
//                                        - commonlength);
//                                text_delete = text_delete.substring(0, text_delete.length()
//                                        - commonlength);
//                                pointer.previous();
//                            }
//                        }
//                        // Insert the merged records.
//                        if (text_delete.length() != 0) {
//                            pointer.add(new Diff(Operation.DELETE, text_delete));
//                        }
//                        if (text_insert.length() != 0) {
//                            pointer.add(new Diff(Operation.INSERT, text_insert));
//                        }
//                        // Step forward to the equality.
//                        thisDiff = pointer.hasNext() ? pointer.next() : null;
//                    } else if (prevEqual != null) {
//                        // Merge this equality with the previous one.
//                        prevEqual.text += thisDiff.text;
//                        pointer.remove();
//                        thisDiff = pointer.previous();
//                        pointer.next();  // Forward direction
//                    }
//                    count_insert = 0;
//                    count_delete = 0;
//                    text_delete = "";
//                    text_insert = "";
//                    prevEqual = thisDiff;
//                    break;
//            }
//            thisDiff = pointer.hasNext() ? pointer.next() : null;
//        }
//        if (diffs.getLast().text.length() == 0) {
//            diffs.removeLast();  // Remove the dummy entry at the end.
//        }
//
//        /*
//         * Second pass: look for single edits surrounded on both sides by equalities
//         * which can be shifted sideways to eliminate an equality.
//         * e.g: ABAC -> ABAC
//         */
//        boolean changes = false;
//        // Create a new iterator at the start.
//        // (As opposed to walking the current one back.)
//        pointer = diffs.listIterator();
//        Diff prevDiff = pointer.hasNext() ? pointer.next() : null;
//        thisDiff = pointer.hasNext() ? pointer.next() : null;
//        Diff nextDiff = pointer.hasNext() ? pointer.next() : null;
//        // Intentionally ignore the first and last element (don't need checking).
//        while (nextDiff != null) {
//            if (prevDiff.operation == Operation.EQUAL
//                    && nextDiff.operation == Operation.EQUAL) {
//                // This is a single edit surrounded by equalities.
//                if (thisDiff.text.endsWith(prevDiff.text)) {
//                    // Shift the edit over the previous equality.
//                    thisDiff.text = prevDiff.text
//                            + thisDiff.text.substring(0, thisDiff.text.length()
//                            - prevDiff.text.length());
//                    nextDiff.text = prevDiff.text + nextDiff.text;
//                    pointer.previous(); // Walk past nextDiff.
//                    pointer.previous(); // Walk past thisDiff.
//                    pointer.previous(); // Walk past prevDiff.
//                    pointer.remove(); // Delete prevDiff.
//                    pointer.next(); // Walk past thisDiff.
//                    thisDiff = pointer.next(); // Walk past nextDiff.
//                    nextDiff = pointer.hasNext() ? pointer.next() : null;
//                    changes = true;
//                } else if (thisDiff.text.startsWith(nextDiff.text)) {
//                    // Shift the edit over the next equality.
//                    prevDiff.text += nextDiff.text;
//                    thisDiff.text = thisDiff.text.substring(nextDiff.text.length())
//                            + nextDiff.text;
//                    pointer.remove(); // Delete nextDiff.
//                    nextDiff = pointer.hasNext() ? pointer.next() : null;
//                    changes = true;
//                }
//            }
//            prevDiff = thisDiff;
//            thisDiff = nextDiff;
//            nextDiff = pointer.hasNext() ? pointer.next() : null;
//        }
//        // If shifts were made, the diff needs reordering and another shift sweep.
//        if (changes) {
//            diff_cleanupMerge(diffs);
//        }
//    }
//
//    /**
//     * loc is a location in text1, compute and return the equivalent location in
//     * text2. e.g. "The cat" vs "The big cat", 1->1, 5->8
//     *
//     * @param diffs LinkedList of Diff objects.
//     * @param loc Location within text1.
//     * @return Location within text2.
//     */
//    public int diff_xIndex(LinkedList diffs, int loc) {
//        int chars1 = 0;
//        int chars2 = 0;
//        int last_chars1 = 0;
//        int last_chars2 = 0;
//        Diff lastDiff = null;
//        for (Diff aDiff : diffs) {
//            if (aDiff.operation != Operation.INSERT) {
//                // Equality or deletion.
//                chars1 += aDiff.text.length();
//            }
//            if (aDiff.operation != Operation.DELETE) {
//                // Equality or insertion.
//                chars2 += aDiff.text.length();
//            }
//            if (chars1 > loc) {
//                // Overshot the location.
//                lastDiff = aDiff;
//                break;
//            }
//            last_chars1 = chars1;
//            last_chars2 = chars2;
//        }
//        if (lastDiff != null && lastDiff.operation == Operation.DELETE) {
//            // The location was deleted.
//            return last_chars2;
//        }
//        // Add the remaining character length.
//        return last_chars2 + (loc - last_chars1);
//    }
//
//    /**
//     * Convert a Diff list into a pretty HTML report.
//     *
//     * @param diffs LinkedList of Diff objects.
//     * @return HTML representation.
//     */
//    public String diff_prettyHtml(LinkedList diffs) {
//        StringBuilder html = new StringBuilder();
//        for (Diff aDiff : diffs) {
//            String text = aDiff.text.replace("&", "&").replace("<", "<")
//                    .replace(">", ">").replace("\n", "¶
"); // switch (aDiff.operation) { // case INSERT: // html.append("").append(text) // .append(""); // break; // case DELETE: // html.append("").append(text) // .append(""); // break; // case EQUAL: // html.append("").append(text).append(""); // break; // } // } // return html.toString(); // } // // /** // * Compute and return the source text (all equalities and deletions). // * // * @param diffs LinkedList of Diff objects. // * @return Source text. // */ // public String diff_text1(LinkedList diffs) { // StringBuilder text = new StringBuilder(); // for (Diff aDiff : diffs) { // if (aDiff.operation != Operation.INSERT) { // text.append(aDiff.text); // } // } // return text.toString(); // } // // /** // * // * @param diffs // * @return // */ // public String diff_text1Custom(LinkedList diffs) { // StringBuilder text = new StringBuilder(); // for (Diff aDiff : diffs) { // if (aDiff.operation == Operation.DELETE) { // if (aDiff.text.matches(" *")) { // text.append("").append(aDiff.text).append(" "); // } else { // text.append("").append(aDiff.text).append(""); // // } // } // if (aDiff.operation == Operation.EQUAL) { // text.append(aDiff.text); // } // } // return text.toString(); // } // // /** // * Compute and return the destination text (all equalities and insertions). // * // * @param diffs LinkedList of Diff objects. // * @return Destination text. // */ // public String diff_text2(LinkedList diffs) { // StringBuilder text = new StringBuilder(); // for (Diff aDiff : diffs) { // if (aDiff.operation != Operation.DELETE) { // text.append(aDiff.text); // } // } // return text.toString(); // } // // /** // * // * @param diffs // * @return // */ // public String diff_text2Custom(LinkedList diffs) { // StringBuilder text = new StringBuilder(); // for (Diff aDiff : diffs) { // // if (aDiff.operation == Operation.INSERT) { // if (aDiff.text.matches(" *")) { // text.append("").append(aDiff.text).append(" "); // } else { // text.append("").append(aDiff.text).append(""); // // } // } // if (aDiff.operation == Operation.EQUAL) { // text.append(aDiff.text); // } // } // return text.toString(); // } // // /** // * Compute the Levenshtein distance; the number of inserted, deleted or // * substituted characters. // * // * @param diffs LinkedList of Diff objects. // * @return Number of changes. // */ // public int diff_levenshtein(LinkedList diffs) { // int levenshtein = 0; // int insertions = 0; // int deletions = 0; // for (Diff aDiff : diffs) { // switch (aDiff.operation) { // case INSERT: // insertions += aDiff.text.length(); // break; // case DELETE: // deletions += aDiff.text.length(); // break; // case EQUAL: // // A deletion and an insertion is one substitution. // levenshtein += Math.max(insertions, deletions); // insertions = 0; // deletions = 0; // break; // } // } // levenshtein += Math.max(insertions, deletions); // return levenshtein; // } // // /** // * Crush the diff into an encoded string which describes the operations // * required to transform text1 into text2. E.g. =3\t-2\t+ing -> Keep 3 // * chars, delete 2 chars, insert 'ing'. Operations are tab-separated. // * Inserted text is escaped using %xx notation. // * // * @param diffs Array of Diff objects. // * @return Delta text. // */ // public String diff_toDelta(LinkedList diffs) { // StringBuilder text = new StringBuilder(); // for (Diff aDiff : diffs) { // switch (aDiff.operation) { // case INSERT: // try { // text.append("+").append(URLEncoder.encode(aDiff.text, "UTF-8") // .replace('+', ' ')).append("\t"); // } catch (UnsupportedEncodingException e) { // // Not likely on modern system. // throw new Error("This system does not support UTF-8.", e); // } // break; // case DELETE: // text.append("-").append(aDiff.text.length()).append("\t"); // break; // case EQUAL: // text.append("=").append(aDiff.text.length()).append("\t"); // break; // } // } // String delta = text.toString(); // if (delta.length() != 0) { // // Strip off trailing tab character. // delta = delta.substring(0, delta.length() - 1); // delta = unescapeForEncodeUriCompatability(delta); // } // return delta; // } // // /** // * Given the original text1, and an encoded string which describes the // * operations required to transform text1 into text2, compute the full diff. // * // * @param text1 Source string for the diff. // * @param delta Delta text. // * @return Array of Diff objects or null if invalid. // * @throws IllegalArgumentException If invalid input. // */ // public LinkedList diff_fromDelta(String text1, String delta) // throws IllegalArgumentException { // LinkedList diffs = new LinkedList(); // int pointer = 0; // Cursor in text1 // String[] tokens = delta.split("\t"); // for (String token : tokens) { // if (token.length() == 0) { // // Blank tokens are ok (from a trailing \t). // continue; // } // // Each token begins with a one character parameter which specifies the // // operation of this token (delete, insert, equality). // String param = token.substring(1); // switch (token.charAt(0)) { // case '+': // // decode would change all "+" to " " // param = param.replace("+", "%2B"); // try { // param = URLDecoder.decode(param, "UTF-8"); // } catch (UnsupportedEncodingException e) { // // Not likely on modern system. // throw new Error("This system does not support UTF-8.", e); // } catch (IllegalArgumentException e) { // // Malformed URI sequence. // throw new IllegalArgumentException( // "Illegal escape in diff_fromDelta: " + param, e); // } // diffs.add(new Diff(Operation.INSERT, param)); // break; // case '-': // // Fall through. // case '=': // int n; // try { // n = Integer.parseInt(param); // } catch (NumberFormatException e) { // throw new IllegalArgumentException( // "Invalid number in diff_fromDelta: " + param, e); // } // if (n < 0) { // throw new IllegalArgumentException( // "Negative number in diff_fromDelta: " + param); // } // String text; // try { // text = text1.substring(pointer, pointer += n); // } catch (StringIndexOutOfBoundsException e) { // throw new IllegalArgumentException("Delta length (" + pointer // + ") larger than source text length (" + text1.length() // + ").", e); // } // if (token.charAt(0) == '=') { // diffs.add(new Diff(Operation.EQUAL, text)); // } else { // diffs.add(new Diff(Operation.DELETE, text)); // } // break; // default: // // Anything else is an error. // throw new IllegalArgumentException( // "Invalid diff operation in diff_fromDelta: " + token.charAt(0)); // } // } // if (pointer != text1.length()) { // throw new IllegalArgumentException("Delta length (" + pointer // + ") smaller than source text length (" + text1.length() + ")."); // } // return diffs; // } // // // MATCH FUNCTIONS // /** // * Locate the best instance of 'pattern' in 'text' near 'loc'. Returns -1 if // * no match found. // * // * @param text The text to search. // * @param pattern The pattern to search for. // * @param loc The location to search around. // * @return Best match index or -1. // */ // public int match_main(String text, String pattern, int loc) { // // Check for null inputs. // if (text == null || pattern == null) { // throw new IllegalArgumentException("Null inputs. (match_main)"); // } // // loc = Math.max(0, Math.min(loc, text.length())); // if (text.equals(pattern)) { // // Shortcut (potentially not guaranteed by the algorithm) // return 0; // } else if (text.length() == 0) { // // Nothing to match. // return -1; // } else if (loc + pattern.length() <= text.length() // && text.substring(loc, loc + pattern.length()).equals(pattern)) { // // Perfect match at the perfect spot! (Includes case of null pattern) // return loc; // } else { // // Do a fuzzy compare. // return match_bitap(text, pattern, loc); // } // } // // /** // * Locate the best instance of 'pattern' in 'text' near 'loc' using the // * Bitap algorithm. Returns -1 if no match found. // * // * @param text The text to search. // * @param pattern The pattern to search for. // * @param loc The location to search around. // * @return Best match index or -1. // */ // protected int match_bitap(String text, String pattern, int loc) { // assert (Match_MaxBits == 0 || pattern.length() <= Match_MaxBits) : "Pattern too long for this application."; // // // Initialise the alphabet. // Map s = match_alphabet(pattern); // // // Highest score beyond which we give up. // double score_threshold = Match_Threshold; // // Is there a nearby exact match? (speedup) // int best_loc = text.indexOf(pattern, loc); // if (best_loc != -1) { // score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern), // score_threshold); // // What about in the other direction? (speedup) // best_loc = text.lastIndexOf(pattern, loc + pattern.length()); // if (best_loc != -1) { // score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern), // score_threshold); // } // } // // // Initialise the bit arrays. // int matchmask = 1 << (pattern.length() - 1); // best_loc = -1; // // int bin_min, bin_mid; // int bin_max = pattern.length() + text.length(); // // Empty initialization added to appease Java compiler. // int[] last_rd = new int[0]; // for (int d = 0; d < pattern.length(); d++) { // // Scan for the best match; each iteration allows for one more error. // // Run a binary search to determine how far from 'loc' we can stray at // // this error level. // bin_min = 0; // bin_mid = bin_max; // while (bin_min < bin_mid) { // if (match_bitapScore(d, loc + bin_mid, loc, pattern) // <= score_threshold) { // bin_min = bin_mid; // } else { // bin_max = bin_mid; // } // bin_mid = (bin_max - bin_min) / 2 + bin_min; // } // // Use the result from this iteration as the maximum for the next. // bin_max = bin_mid; // int start = Math.max(1, loc - bin_mid + 1); // int finish = Math.min(loc + bin_mid, text.length()) + pattern.length(); // // int[] rd = new int[finish + 2]; // rd[finish + 1] = (1 << d) - 1; // for (int j = finish; j >= start; j--) { // int charMatch; // if (text.length() <= j - 1 || !s.containsKey(text.charAt(j - 1))) { // // Out of range. // charMatch = 0; // } else { // charMatch = s.get(text.charAt(j - 1)); // } // if (d == 0) { // // First pass: exact match. // rd[j] = ((rd[j + 1] << 1) | 1) & charMatch; // } else { // // Subsequent passes: fuzzy match. // rd[j] = (((rd[j + 1] << 1) | 1) & charMatch) // | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1]; // } // if ((rd[j] & matchmask) != 0) { // double score = match_bitapScore(d, j - 1, loc, pattern); // // This match will almost certainly be better than any existing // // match. But check anyway. // if (score <= score_threshold) { // // Told you so. // score_threshold = score; // best_loc = j - 1; // if (best_loc > loc) { // // When passing loc, don't exceed our current distance from loc. // start = Math.max(1, 2 * loc - best_loc); // } else { // // Already passed loc, downhill from here on in. // break; // } // } // } // } // if (match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) { // // No hope for a (better) match at greater error levels. // break; // } // last_rd = rd; // } // return best_loc; // } // // /** // * Compute and return the score for a match with e errors and x location. // * // * @param e Number of errors in match. // * @param x Location of match. // * @param loc Expected location of match. // * @param pattern Pattern being sought. // * @return Overall score for match (0.0 = good, 1.0 = bad). // */ // private double match_bitapScore(int e, int x, int loc, String pattern) { // float accuracy = (float) e / pattern.length(); // int proximity = Math.abs(loc - x); // if (Match_Distance == 0) { // // Dodge divide by zero error. // return proximity == 0 ? accuracy : 1.0; // } // return accuracy + (proximity / (float) Match_Distance); // } // // /** // * Initialise the alphabet for the Bitap algorithm. // * // * @param pattern The text to encode. // * @return Hash of character locations. // */ // protected Map match_alphabet(String pattern) { // Map s = new HashMap(); // char[] char_pattern = pattern.toCharArray(); // for (char c : char_pattern) { // s.put(c, 0); // } // int i = 0; // for (char c : char_pattern) { // s.put(c, s.get(c) | (1 << (pattern.length() - i - 1))); // i++; // } // return s; // } // // // PATCH FUNCTIONS // /** // * Increase the context until it is unique, but don't let the pattern expand // * beyond Match_MaxBits. // * // * @param patch The patch to grow. // * @param text Source text. // */ // protected void patch_addContext(Patch patch, String text) { // if (text.length() == 0) { // return; // } // String pattern = text.substring(patch.start2, patch.start2 + patch.length1); // int padding = 0; // // // Look for the first and last matches of pattern in text. If two different // // matches are found, increase the pattern length. // while (text.indexOf(pattern) != text.lastIndexOf(pattern) // && pattern.length() < Match_MaxBits - Patch_Margin - Patch_Margin) { // padding += Patch_Margin; // pattern = text.substring(Math.max(0, patch.start2 - padding), // Math.min(text.length(), patch.start2 + patch.length1 + padding)); // } // // Add one chunk for good luck. // padding += Patch_Margin; // // // Add the prefix. // String prefix = text.substring(Math.max(0, patch.start2 - padding), // patch.start2); // if (prefix.length() != 0) { // patch.diffs.addFirst(new Diff(Operation.EQUAL, prefix)); // } // // Add the suffix. // String suffix = text.substring(patch.start2 + patch.length1, // Math.min(text.length(), patch.start2 + patch.length1 + padding)); // if (suffix.length() != 0) { // patch.diffs.addLast(new Diff(Operation.EQUAL, suffix)); // } // // // Roll back the start points. // patch.start1 -= prefix.length(); // patch.start2 -= prefix.length(); // // Extend the lengths. // patch.length1 += prefix.length() + suffix.length(); // patch.length2 += prefix.length() + suffix.length(); // } // // /** // * Compute a list of patches to turn text1 into text2. A set of diffs will // * be computed. // * // * @param text1 Old text. // * @param text2 New text. // * @return LinkedList of Patch objects. // */ // public LinkedList patch_make(String text1, String text2) { // if (text1 == null || text2 == null) { // return null; // } // // No diffs provided, compute our own. // LinkedList diffs = diff_main(text1, text2, true); // if (diffs.size() > 2) { // diff_cleanupSemantic(diffs); // diff_cleanupEfficiency(diffs); // } // return patch_make(text1, diffs); // } // // /** // * Compute a list of patches to turn text1 into text2. text1 will be derived // * from the provided diffs. // * // * @param diffs Array of Diff objects for text1 to text2. // * @return LinkedList of Patch objects. // */ // public LinkedList patch_make(LinkedList diffs) { // if (diffs == null) { // throw new IllegalArgumentException("Null inputs. (patch_make)"); // } // // No origin string provided, compute our own. // String text1 = diff_text1(diffs); // return patch_make(text1, diffs); // } // // /** // * Compute a list of patches to turn text1 into text2. text2 is ignored, // * diffs are the delta between text1 and text2. // * // * @param text1 Old text // * @param text2 Ignored. // * @param diffs Array of Diff objects for text1 to text2. // * @return LinkedList of Patch objects. // * @deprecated Prefer patch_make(String text1, LinkedList diffs). // */ // public LinkedList patch_make(String text1, String text2, // LinkedList diffs) { // return patch_make(text1, diffs); // } // // /** // * Compute a list of patches to turn text1 into text2. text2 is not // * provided, diffs are the delta between text1 and text2. // * // * @param text1 Old text. // * @param diffs Array of Diff objects for text1 to text2. // * @return LinkedList of Patch objects. // */ // public LinkedList patch_make(String text1, LinkedList diffs) { // if (text1 == null || diffs == null) { // throw new IllegalArgumentException("Null inputs. (patch_make)"); // } // // LinkedList patches = new LinkedList(); // if (diffs.isEmpty()) { // return patches; // Get rid of the null case. // } // Patch patch = new Patch(); // int char_count1 = 0; // Number of characters into the text1 string. // int char_count2 = 0; // Number of characters into the text2 string. // // Start with text1 (prepatch_text) and apply the diffs until we arrive at // // text2 (postpatch_text). We recreate the patches one by one to determine // // context info. // String prepatch_text = text1; // String postpatch_text = text1; // for (Diff aDiff : diffs) { // if (patch.diffs.isEmpty() && aDiff.operation != Operation.EQUAL) { // // A new patch starts here. // patch.start1 = char_count1; // patch.start2 = char_count2; // } // // switch (aDiff.operation) { // case INSERT: // patch.diffs.add(aDiff); // patch.length2 += aDiff.text.length(); // postpatch_text = postpatch_text.substring(0, char_count2) // + aDiff.text + postpatch_text.substring(char_count2); // break; // case DELETE: // patch.length1 += aDiff.text.length(); // patch.diffs.add(aDiff); // postpatch_text = postpatch_text.substring(0, char_count2) // + postpatch_text.substring(char_count2 + aDiff.text.length()); // break; // case EQUAL: // if (aDiff.text.length() <= 2 * Patch_Margin // && !patch.diffs.isEmpty() && aDiff != diffs.getLast()) { // // Small equality inside a patch. // patch.diffs.add(aDiff); // patch.length1 += aDiff.text.length(); // patch.length2 += aDiff.text.length(); // } // // if (aDiff.text.length() >= 2 * Patch_Margin) { // // Time for a new patch. // if (!patch.diffs.isEmpty()) { // patch_addContext(patch, prepatch_text); // patches.add(patch); // patch = new Patch(); // // Unlike Unidiff, our patch lists have a rolling context. // // http://code.google.com/p/google-diff-match-patch/wiki/Unidiff // // Update prepatch text & pos to reflect the application of the // // just completed patch. // prepatch_text = postpatch_text; // char_count1 = char_count2; // } // } // break; // } // // // Update the current character count. // if (aDiff.operation != Operation.INSERT) { // char_count1 += aDiff.text.length(); // } // if (aDiff.operation != Operation.DELETE) { // char_count2 += aDiff.text.length(); // } // } // // Pick up the leftover patch if not empty. // if (!patch.diffs.isEmpty()) { // patch_addContext(patch, prepatch_text); // patches.add(patch); // } // // return patches; // } // // /** // * Given an array of patches, return another array that is identical. // * // * @param patches Array of Patch objects. // * @return Array of Patch objects. // */ // public LinkedList patch_deepCopy(LinkedList patches) { // LinkedList patchesCopy = new LinkedList(); // for (Patch aPatch : patches) { // Patch patchCopy = new Patch(); // for (Diff aDiff : aPatch.diffs) { // Diff diffCopy = new Diff(aDiff.operation, aDiff.text); // patchCopy.diffs.add(diffCopy); // } // patchCopy.start1 = aPatch.start1; // patchCopy.start2 = aPatch.start2; // patchCopy.length1 = aPatch.length1; // patchCopy.length2 = aPatch.length2; // patchesCopy.add(patchCopy); // } // return patchesCopy; // } // // /** // * Merge a set of patches onto the text. Return a patched text, as well as // * an array of true/false values indicating which patches were applied. // * // * @param patches Array of Patch objects // * @param text Old text. // * @return Two element Object array, containing the new text and an array of // * boolean values. // */ // public Object[] patch_apply(LinkedList patches, String text) { // if (patches.isEmpty()) { // return new Object[]{text, new boolean[0]}; // } // // // Deep copy the patches so that no changes are made to originals. // patches = patch_deepCopy(patches); // // String nullPadding = patch_addPadding(patches); // text = nullPadding + text + nullPadding; // patch_splitMax(patches); // // int x = 0; // // delta keeps track of the offset between the expected and actual location // // of the previous patch. If there are patches expected at positions 10 and // // 20, but the first patch was found at 12, delta is 2 and the second patch // // has an effective expected position of 22. // int delta = 0; // boolean[] results = new boolean[patches.size()]; // for (Patch aPatch : patches) { // int expected_loc = aPatch.start2 + delta; // String text1 = diff_text1(aPatch.diffs); // int start_loc; // int end_loc = -1; // if (text1.length() > this.Match_MaxBits) { // // patch_splitMax will only provide an oversized pattern in the case of // // a monster delete. // start_loc = match_main(text, // text1.substring(0, this.Match_MaxBits), expected_loc); // if (start_loc != -1) { // end_loc = match_main(text, // text1.substring(text1.length() - this.Match_MaxBits), // expected_loc + text1.length() - this.Match_MaxBits); // if (end_loc == -1 || start_loc >= end_loc) { // // Can't find valid trailing context. Drop this patch. // start_loc = -1; // } // } // } else { // start_loc = match_main(text, text1, expected_loc); // } // if (start_loc == -1) { // // No match found. :( // results[x] = false; // // Subtract the delta for this failed patch from subsequent patches. // delta -= aPatch.length2 - aPatch.length1; // } else { // // Found a match. :) // results[x] = true; // delta = start_loc - expected_loc; // String text2; // if (end_loc == -1) { // text2 = text.substring(start_loc, // Math.min(start_loc + text1.length(), text.length())); // } else { // text2 = text.substring(start_loc, // Math.min(end_loc + this.Match_MaxBits, text.length())); // } // if (text1.equals(text2)) { // // Perfect match, just shove the replacement text in. // text = text.substring(0, start_loc) + diff_text2(aPatch.diffs) // + text.substring(start_loc + text1.length()); // } else { // // Imperfect match. Run a diff to get a framework of equivalent // // indices. // LinkedList diffs = diff_main(text1, text2, false); // if (text1.length() > this.Match_MaxBits // && diff_levenshtein(diffs) / (float) text1.length() // > this.Patch_DeleteThreshold) { // // The end points match, but the content is unacceptably bad. // results[x] = false; // } else { // diff_cleanupSemanticLossless(diffs); // int index1 = 0; // for (Diff aDiff : aPatch.diffs) { // if (aDiff.operation != Operation.EQUAL) { // int index2 = diff_xIndex(diffs, index1); // if (aDiff.operation == Operation.INSERT) { // // Insertion // text = text.substring(0, start_loc + index2) + aDiff.text // + text.substring(start_loc + index2); // } else if (aDiff.operation == Operation.DELETE) { // // Deletion // text = text.substring(0, start_loc + index2) // + text.substring(start_loc + diff_xIndex(diffs, // index1 + aDiff.text.length())); // } // } // if (aDiff.operation != Operation.DELETE) { // index1 += aDiff.text.length(); // } // } // } // } // } // x++; // } // // Strip the padding off. // text = text.substring(nullPadding.length(), text.length() // - nullPadding.length()); // return new Object[]{text, results}; // } // // /** // * Add some padding on text start and end so that edges can match something. // * Intended to be called only from within patch_apply. // * // * @param patches Array of Patch objects. // * @return The padding string added to each side. // */ // public String patch_addPadding(LinkedList patches) { // short paddingLength = this.Patch_Margin; // String nullPadding = ""; // for (short x = 1; x <= paddingLength; x++) { // nullPadding += String.valueOf((char) x); // } // // // Bump all the patches forward. // for (Patch aPatch : patches) { // aPatch.start1 += paddingLength; // aPatch.start2 += paddingLength; // } // // // Add some padding on start of first diff. // Patch patch = patches.getFirst(); // LinkedList diffs = patch.diffs; // if (diffs.isEmpty() || diffs.getFirst().operation != Operation.EQUAL) { // // Add nullPadding equality. // diffs.addFirst(new Diff(Operation.EQUAL, nullPadding)); // patch.start1 -= paddingLength; // Should be 0. // patch.start2 -= paddingLength; // Should be 0. // patch.length1 += paddingLength; // patch.length2 += paddingLength; // } else if (paddingLength > diffs.getFirst().text.length()) { // // Grow first equality. // Diff firstDiff = diffs.getFirst(); // int extraLength = paddingLength - firstDiff.text.length(); // firstDiff.text = nullPadding.substring(firstDiff.text.length()) // + firstDiff.text; // patch.start1 -= extraLength; // patch.start2 -= extraLength; // patch.length1 += extraLength; // patch.length2 += extraLength; // } // // // Add some padding on end of last diff. // patch = patches.getLast(); // diffs = patch.diffs; // if (diffs.isEmpty() || diffs.getLast().operation != Operation.EQUAL) { // // Add nullPadding equality. // diffs.addLast(new Diff(Operation.EQUAL, nullPadding)); // patch.length1 += paddingLength; // patch.length2 += paddingLength; // } else if (paddingLength > diffs.getLast().text.length()) { // // Grow last equality. // Diff lastDiff = diffs.getLast(); // int extraLength = paddingLength - lastDiff.text.length(); // lastDiff.text += nullPadding.substring(0, extraLength); // patch.length1 += extraLength; // patch.length2 += extraLength; // } // // return nullPadding; // } // // /** // * Look through the patches and break up any which are longer than the // * maximum limit of the match algorithm. Intended to be called only from // * within patch_apply. // * // * @param patches LinkedList of Patch objects. // */ // public void patch_splitMax(LinkedList patches) { // short patch_size = Match_MaxBits; // String precontext, postcontext; // Patch patch; // int start1, start2; // boolean empty; // Operation diff_type; // String diff_text; // ListIterator pointer = patches.listIterator(); // Patch bigpatch = pointer.hasNext() ? pointer.next() : null; // while (bigpatch != null) { // if (bigpatch.length1 <= Match_MaxBits) { // bigpatch = pointer.hasNext() ? pointer.next() : null; // continue; // } // // Remove the big old patch. // pointer.remove(); // start1 = bigpatch.start1; // start2 = bigpatch.start2; // precontext = ""; // while (!bigpatch.diffs.isEmpty()) { // // Create one of several smaller patches. // patch = new Patch(); // empty = true; // patch.start1 = start1 - precontext.length(); // patch.start2 = start2 - precontext.length(); // if (precontext.length() != 0) { // patch.length1 = patch.length2 = precontext.length(); // patch.diffs.add(new Diff(Operation.EQUAL, precontext)); // } // while (!bigpatch.diffs.isEmpty() // && patch.length1 < patch_size - Patch_Margin) { // diff_type = bigpatch.diffs.getFirst().operation; // diff_text = bigpatch.diffs.getFirst().text; // if (diff_type == Operation.INSERT) { // // Insertions are harmless. // patch.length2 += diff_text.length(); // start2 += diff_text.length(); // patch.diffs.addLast(bigpatch.diffs.removeFirst()); // empty = false; // } else if (diff_type == Operation.DELETE && patch.diffs.size() == 1 // && patch.diffs.getFirst().operation == Operation.EQUAL // && diff_text.length() > 2 * patch_size) { // // This is a large deletion. Let it pass in one chunk. // patch.length1 += diff_text.length(); // start1 += diff_text.length(); // empty = false; // patch.diffs.add(new Diff(diff_type, diff_text)); // bigpatch.diffs.removeFirst(); // } else { // // Deletion or equality. Only take as much as we can stomach. // diff_text = diff_text.substring(0, Math.min(diff_text.length(), // patch_size - patch.length1 - Patch_Margin)); // patch.length1 += diff_text.length(); // start1 += diff_text.length(); // if (diff_type == Operation.EQUAL) { // patch.length2 += diff_text.length(); // start2 += diff_text.length(); // } else { // empty = false; // } // patch.diffs.add(new Diff(diff_type, diff_text)); // if (diff_text.equals(bigpatch.diffs.getFirst().text)) { // bigpatch.diffs.removeFirst(); // } else { // bigpatch.diffs.getFirst().text = bigpatch.diffs.getFirst().text // .substring(diff_text.length()); // } // } // } // // Compute the head context for the next patch. // precontext = diff_text2(patch.diffs); // precontext = precontext.substring(Math.max(0, precontext.length() // - Patch_Margin)); // // Append the end context for this patch. // if (diff_text1(bigpatch.diffs).length() > Patch_Margin) { // postcontext = diff_text1(bigpatch.diffs).substring(0, Patch_Margin); // } else { // postcontext = diff_text1(bigpatch.diffs); // } // if (postcontext.length() != 0) { // patch.length1 += postcontext.length(); // patch.length2 += postcontext.length(); // if (!patch.diffs.isEmpty() // && patch.diffs.getLast().operation == Operation.EQUAL) { // patch.diffs.getLast().text += postcontext; // } else { // patch.diffs.add(new Diff(Operation.EQUAL, postcontext)); // } // } // if (!empty) { // pointer.add(patch); // } // } // bigpatch = pointer.hasNext() ? pointer.next() : null; // } // } // // /** // * Take a list of patches and return a textual representation. // * // * @param patches List of Patch objects. // * @return Text representation of patches. // */ // public String patch_toText(List patches) { // StringBuilder text = new StringBuilder(); // for (Patch aPatch : patches) { // text.append(aPatch); // } // return text.toString(); // } // // /** // * Parse a textual representation of patches and return a List of Patch // * objects. // * // * @param textline Text representation of patches. // * @return List of Patch objects. // * @throws IllegalArgumentException If invalid input. // */ // public List patch_fromText(String textline) // throws IllegalArgumentException { // List patches = new LinkedList(); // if (textline.length() == 0) { // return patches; // } // List textList = Arrays.asList(textline.split("\n")); // LinkedList text = new LinkedList(textList); // Patch patch; // Pattern patchHeader = Pattern.compile("^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$"); // Matcher m; // char sign; // String line; // while (!text.isEmpty()) { // m = patchHeader.matcher(text.getFirst()); // if (!m.matches()) { // throw new IllegalArgumentException( // "Invalid patch string: " + text.getFirst()); // } // patch = new Patch(); // patches.add(patch); // patch.start1 = Integer.parseInt(m.group(1)); // if (m.group(2).length() == 0) { // patch.start1--; // patch.length1 = 1; // } else if (m.group(2).equals("0")) { // patch.length1 = 0; // } else { // patch.start1--; // patch.length1 = Integer.parseInt(m.group(2)); // } // // patch.start2 = Integer.parseInt(m.group(3)); // if (m.group(4).length() == 0) { // patch.start2--; // patch.length2 = 1; // } else if (m.group(4).equals("0")) { // patch.length2 = 0; // } else { // patch.start2--; // patch.length2 = Integer.parseInt(m.group(4)); // } // text.removeFirst(); // // while (!text.isEmpty()) { // try { // sign = text.getFirst().charAt(0); // } catch (IndexOutOfBoundsException e) { // // Blank line? Whatever. // text.removeFirst(); // continue; // } // line = text.getFirst().substring(1); // line = line.replace("+", "%2B"); // decode would change all "+" to " " // try { // line = URLDecoder.decode(line, "UTF-8"); // } catch (UnsupportedEncodingException e) { // // Not likely on modern system. // throw new Error("This system does not support UTF-8.", e); // } catch (IllegalArgumentException e) { // // Malformed URI sequence. // throw new IllegalArgumentException( // "Illegal escape in patch_fromText: " + line, e); // } // if (sign == '-') { // // Deletion. // patch.diffs.add(new Diff(Operation.DELETE, line)); // } else if (sign == '+') { // // Insertion. // patch.diffs.add(new Diff(Operation.INSERT, line)); // } else if (sign == ' ') { // // Minor equality. // patch.diffs.add(new Diff(Operation.EQUAL, line)); // } else if (sign == '@') { // // Start of next patch. // break; // } else { // // WTF? // throw new IllegalArgumentException( // "Invalid patch mode '" + sign + "' in: " + line); // } // text.removeFirst(); // } // } // return patches; // } // // /** // * Class representing one diff operation. // */ // public static class Diff { // // /** // * One of: INSERT, DELETE or EQUAL. // */ // public Operation operation; // /** // * The text associated with this diff operation. // */ // public String text; // // /** // * Constructor. Initializes the diff with the provided values. // * // * @param operation One of INSERT, DELETE or EQUAL. // * @param text The text being applied. // */ // public Diff(Operation operation, String text) { // // Construct a diff with the specified operation and text. // this.operation = operation; // this.text = text; // } // // /** // * Display a human-readable version of this Diff. // * // * @return text version. // */ // public String toString() { // String prettyText = this.text.replace('\n', '\u00b6'); // return "Diff(" + this.operation + ",\"" + prettyText + "\")"; // } // // /** // * Create a numeric hash value for a Diff. This function is not used by // * DMP. // * // * @return Hash value. // */ // @Override // public int hashCode() { // final int prime = 31; // int result = (operation == null) ? 0 : operation.hashCode(); // result += prime * ((text == null) ? 0 : text.hashCode()); // return result; // } // // /** // * Is this Diff equivalent to another Diff? // * // * @param obj Another Diff to compare against. // * @return true or false. // */ // @Override // public boolean equals(Object obj) { // if (this == obj) { // return true; // } // if (obj == null) { // return false; // } // if (getClass() != obj.getClass()) { // return false; // } // Diff other = (Diff) obj; // if (operation != other.operation) { // return false; // } // if (text == null) { // if (other.text != null) { // return false; // } // } else if (!text.equals(other.text)) { // return false; // } // return true; // } // } // // /** // * Class representing one patch operation. // */ // public static class Patch { // // /** // * // */ // public LinkedList diffs; // // /** // * // */ // public int start1; // // /** // * // */ // public int start2; // // /** // * // */ // public int length1; // // /** // * // */ // public int length2; // // /** // * Constructor. Initializes with an empty list of diffs. // */ // public Patch() { // this.diffs = new LinkedList(); // } // // /** // * Emmulate GNU diff's format. Header: // * // * @@ -382,8 +481,9 // * @@ Indicies are printed as 1-based, not 0-based. // * @return The GNU diff string. // */ // public String toString() { // String coords1, coords2; // if (this.length1 == 0) { // coords1 = this.start1 + ",0"; // } else if (this.length1 == 1) { // coords1 = Integer.toString(this.start1 + 1); // } else { // coords1 = (this.start1 + 1) + "," + this.length1; // } // if (this.length2 == 0) { // coords2 = this.start2 + ",0"; // } else if (this.length2 == 1) { // coords2 = Integer.toString(this.start2 + 1); // } else { // coords2 = (this.start2 + 1) + "," + this.length2; // } // StringBuilder text = new StringBuilder(); // text.append("@@ -").append(coords1).append(" +").append(coords2) // .append(" @@\n"); // // Escape the body of the patch with %xx notation. // for (Diff aDiff : this.diffs) { // switch (aDiff.operation) { // case INSERT: // text.append('+'); // break; // case DELETE: // text.append('-'); // break; // case EQUAL: // text.append(' '); // break; // } // try { // text.append(URLEncoder.encode(aDiff.text, "UTF-8").replace('+', ' ')) // .append("\n"); // } catch (UnsupportedEncodingException e) { // // Not likely on modern system. // throw new Error("This system does not support UTF-8.", e); // } // } // return unescapeForEncodeUriCompatability(text.toString()); // } // } // // /** // * Unescape selected chars for compatability with JavaScript's encodeURI. In // * speed critical applications this could be dropped since the receiving // * application will certainly decode these fine. Note that this function is // * case-sensitive. Thus "%3f" would not be unescaped. But this is ok because // * it is only called with the output of URLEncoder.encode which returns // * uppercase hex. // * // * Example: "%3F" -> "?", "%24" -> "$", etc. // * // * @param str The string to escape. // * @return The escaped string. // */ // private static String unescapeForEncodeUriCompatability(String str) { // return str.replace("%21", "!").replace("%7E", "~") // .replace("%27", "'").replace("%28", "(").replace("%29", ")") // .replace("%3B", ";").replace("%2F", "/").replace("%3F", "?") // .replace("%3A", ":").replace("%40", "@").replace("%26", "&") // .replace("%3D", "=").replace("%2B", "+").replace("%24", "$") // .replace("%2C", ",").replace("%23", "#"); // } //}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy