net.finmath.montecarlo.templatemethoddesign.LogNormalProcess Maven / Gradle / Ivy
/*
* Created on 19.01.2004
*/
package net.finmath.montecarlo.templatemethoddesign;
import net.finmath.montecarlo.BrownianMotionInterface;
import net.finmath.montecarlo.RandomVariable;
import net.finmath.stochastic.RandomVariableInterface;
import net.finmath.time.TimeDiscretizationInterface;
/**
* This class is an abstract base class to implement an Euler scheme of a multi-dimensional multi-factor log-normal Ito process.
* The dimension is called numberOfComponents
here. The default for numberOfFactors
is 1.
*
* @author Christian Fries
* @date 19.04.2008
* @version 1.5
*/
public abstract class LogNormalProcess {
public enum Scheme { EULER, PREDICTOR_USING_EULERSTEP, PREDICTOR_USING_LASTREALIZATION };
private BrownianMotionInterface brownianMotion;
private RandomVariableInterface[][] discreteProcess = null;
private RandomVariableInterface[] discreteProcessWeights = null;
private TimeDiscretizationInterface timeDiscretization;
private int numberOfComponents;
private int numberOfFactors;
private int numberOfPaths;
private Scheme scheme = Scheme.EULER;
/**
* Create a log normal process.
*
* @param numberOfComponents The number of components (scalar processes).
* @param brownianMotion A Brownian motion
*/
public LogNormalProcess(
int numberOfComponents,
BrownianMotionInterface brownianMotion) {
super();
this.timeDiscretization = brownianMotion.getTimeDiscretization();
this.numberOfComponents = numberOfComponents;
this.numberOfFactors = brownianMotion.getNumberOfFactors();
this.numberOfPaths = brownianMotion.getNumberOfPaths();
this.brownianMotion = brownianMotion;
}
/**
* Create a simulation of log normal process.
*
* @param timeDiscretization The time discretization of the process.
* @param numberOfComponents The number of components (the dimension of the process).
* @param numberOfPaths The number of path of the simulation.
*/
public LogNormalProcess(
TimeDiscretizationInterface timeDiscretization,
int numberOfComponents,
int numberOfPaths) {
super();
this.timeDiscretization = timeDiscretization;
this.numberOfComponents = numberOfComponents;
this.numberOfFactors = 1;
this.numberOfPaths = numberOfPaths;
// Create a Brownian motion
brownianMotion = new net.finmath.montecarlo.BrownianMotion(
timeDiscretization,
numberOfFactors,
numberOfPaths,
3141 /* seed */);
}
/**
* Create a simulation of log normal process.
*
* @param timeDiscretization The time discretization of the process.
* @param numberOfComponents The number of components (the dimension of the process).
* @param numberOfFactors The number of factors of the process.
* @param numberOfPaths The number of path of the simulation.
* @param seed The seed of the underlying random number generator.
*/
public LogNormalProcess(
TimeDiscretizationInterface timeDiscretization,
int numberOfComponents,
int numberOfFactors,
int numberOfPaths,
int seed) {
super();
this.timeDiscretization = timeDiscretization;
this.numberOfComponents = numberOfComponents;
this.numberOfFactors = numberOfFactors;
this.numberOfPaths = numberOfPaths;
// Create a Brownian motion
brownianMotion = new net.finmath.montecarlo.BrownianMotion(
timeDiscretization,
numberOfFactors,
numberOfPaths,
seed);
}
abstract public RandomVariableInterface[] getInitialValue();
abstract public RandomVariableInterface getDrift(int timeIndex, int componentIndex, RandomVariableInterface[] realizationAtTimeIndex, RandomVariableInterface[] realizationPredictor);
/**
* Get the the drift.
*
* @param timeIndex The time index (related to the model times discretization).
* @param realizationAtTimeIndex The given realization at timeIndex
* @param realizationPredictor The given realization at timeIndex+1
or null of no predictor is available.
* @return The (average) drift from timeIndex to timeIndex+1
*/
public RandomVariableInterface[] getDrift(int timeIndex, RandomVariableInterface[] realizationAtTimeIndex, RandomVariableInterface[] realizationPredictor) {
RandomVariableInterface[] drift = new RandomVariableInterface[getNumberOfComponents()];
/*
* We implemented several different methods to calculate the drift
*/
for(int componentIndex=0; componentIndex
* dS(j) = (...) dt + S(j) * (λ(1,j) dW(1) + ... + λ(m,j) dW(m))
* in an m-factor model. Here j denotes index of the component of the resulting
* log-normal process and i denotes the index of the factor.
* Overwrite this method if you would like to implement a multi factor model.
*
* @param timeIndex The time index of the simulation time discretization.
* @param factor The factor index.
* @param component The component index.
* @param realizationAtTimeIndex The realization at the current time index.
* @return factor loading for given factor and component
*/
abstract public RandomVariableInterface getFactorLoading(int timeIndex, int factor, int component, RandomVariableInterface[] realizationAtTimeIndex);
/**
* This method returns the realization of the process at a certain time index.
*
* @param timeIndex Time index at which the process should be observed
* @return A vector of process realizations (on path)
*/
public RandomVariableInterface[] getProcessValue(int timeIndex)
{
// Thread safe lazy initialization
synchronized(this) {
if(discreteProcess == null || discreteProcess.length == 0)
{
doPrecalculateProcess();
}
}
// Return value of process
return discreteProcess[timeIndex];
}
/**
* This method returns the realization of the process at a certain time index.
*
* @param timeIndex Time index at which the process should be observed
* @param componentIndex Component of the process vector
* @return A vector of process realizations (on path)
*/
public RandomVariableInterface getProcessValue(int timeIndex, int componentIndex)
{
if(timeIndex == 0) return getInitialValue()[componentIndex];
// Lazy initialization, synchronized for thread safety
synchronized(this) {
if(discreteProcess == null || discreteProcess.length == 0) doPrecalculateProcess();
}
// Return value of process
return discreteProcess[timeIndex][componentIndex];
}
/**
* This method returns the weights of a weighted Monte Carlo method (the probability density).
*
* @param timeIndex Time index at which the process should be observed
* @return A vector of positive weights which sums up to one
*/
public RandomVariableInterface getMonteCarloWeights(int timeIndex)
{
// Lazy initialization, synchronized for thread safety
synchronized(this) {
if(discreteProcessWeights == null || discreteProcessWeights.length == 0) doPrecalculateProcess();
}
// Return value of process
return discreteProcessWeights[timeIndex];
}
/**
* Calculates the whole (discrete) process.
*/
private void doPrecalculateProcess()
{
if(discreteProcess != null && discreteProcess.length != 0) return;
// Allocate Memory
discreteProcess = new RandomVariableInterface[timeDiscretization.getNumberOfTimeSteps()+1][numberOfComponents];
discreteProcessWeights = new RandomVariableInterface[getTimeDiscretization().getNumberOfTimeSteps()+1];
// Set initial Monte-Carlo weights
discreteProcessWeights[0] = new RandomVariable(0.0, 1.0/numberOfPaths);
// Store components
discreteProcess[0] = getInitialValue();
// Evolve process
for(int timeIndex = 1; timeIndex < timeDiscretization.getNumberOfTimeSteps()+1; timeIndex++)
{
// Generate process at timeIndex
double deltaT = timeDiscretization.getTime(timeIndex) - timeDiscretization.getTime(timeIndex-1);
// Temp storage for variance and diffusion
RandomVariableInterface[] variance = new RandomVariableInterface[numberOfComponents];
RandomVariableInterface[] diffusion = new RandomVariableInterface[numberOfComponents];
// Calculate new realization
for(int componentIndex = numberOfComponents-1; componentIndex >= 0; componentIndex--)
{
// Calculate diffusion
// Temp storage for variance and diffusion
RandomVariableInterface varianceOfComponent = new RandomVariable(getTime(timeIndex-1),0.0);
RandomVariableInterface diffusionOfComponent = new RandomVariable(getTime(timeIndex-1),0.0);
// Generate values for diffusionOfComponent and varianceOfComponent
for(int factor=0; factor= 0; componentIndex--)
{
RandomVariableInterface driftOfComponent = drift[componentIndex];
RandomVariableInterface varianceOfComponent = variance[componentIndex];
RandomVariableInterface diffusionOfComponent = diffusion[componentIndex];
if(driftOfComponent == null) {
discreteProcess[timeIndex][componentIndex] = discreteProcess[timeIndex-1][componentIndex];
continue;
}
// Allocate memory for on path-realizations
double[] newRealization = new double[numberOfPaths];
// Euler Scheme
RandomVariableInterface previouseRealization = discreteProcess[timeIndex-1][componentIndex];
// Generate values
for(int pathIndex = 0; pathIndex < numberOfPaths; pathIndex++)
{
double previousValue = previouseRealization.get(pathIndex);
double driftOnPath = driftOfComponent.get(pathIndex);
double varianceOnPath = varianceOfComponent.get(pathIndex);
double diffusionOnPath = diffusionOfComponent.get(pathIndex);
// The scheme
newRealization[pathIndex] = previousValue * Math.exp(driftOnPath * deltaT - 0.5 * varianceOnPath * deltaT + diffusionOnPath);
}
// Store components
discreteProcess[timeIndex][componentIndex] = new RandomVariable(getTime(timeIndex),newRealization);
}
if(scheme == Scheme.PREDICTOR_USING_EULERSTEP) {
RandomVariable[] newRealization = new RandomVariable[numberOfComponents];
// Note: This is actually more than a predictor corrector: The drift of componentIndex already uses the corrected predictor from the previous components
drift = getDrift(timeIndex-1, discreteProcess[timeIndex-1], discreteProcess[timeIndex]);
// Apply corrector step to realizations at next time step
for(int componentIndex = 0; componentIndex < numberOfComponents; componentIndex++)
{
RandomVariableInterface driftOfComponent = drift[componentIndex];
RandomVariableInterface varianceOfComponent = variance[componentIndex];
RandomVariableInterface diffusionOfComponent = diffusion[componentIndex];
// Get reference to newRealization (note, we force mutability of an immutable object, but we know what we are doing)
double[] newRealizationValues = ((RandomVariable)(discreteProcess[timeIndex][componentIndex])).getRealizations(numberOfPaths);
// Euler Scheme with corrected drift
RandomVariableInterface previouseRealization = discreteProcess[timeIndex-1][componentIndex];
// Generate values
for (int pathIndex = 0; pathIndex < numberOfPaths; pathIndex++ )
{
double previousValue = previouseRealization.get(pathIndex);
double driftValue = driftOfComponent.get(pathIndex);
double varianceOnPath = varianceOfComponent.get(pathIndex);
double diffusionOnPath = diffusionOfComponent.get(pathIndex);
// The scheme
newRealizationValues[pathIndex] = previousValue * Math.exp(driftValue * deltaT - 0.5 * varianceOnPath * deltaT + diffusionOnPath);
} // End for(pathIndex)
// Store values
newRealization[componentIndex] = new RandomVariable(getTime(timeIndex), newRealizationValues);
} // End for(componentIndex)
// Store predictor-corrector corrected process.
discreteProcess[timeIndex] = newRealization;
} // End if(scheme == LogNormalProcess.SCHEME_PREDICTOR_USES_EULER)
// Set Monte-Carlo weights (since there is no Monte-Carlo weighting, the weights remain the same (namely 1.0/numberOfPaths).
discreteProcessWeights[timeIndex] = discreteProcessWeights[timeIndex-1];
} // End for(timeIndex)
}
/**
* @return Returns the numberOfComponents.
*/
public int getNumberOfComponents() {
return numberOfComponents;
}
/**
* @return Returns the numberOfPaths.
*/
public int getNumberOfPaths() {
return numberOfPaths;
}
/**
* @return Returns the numberOfFactors.
*/
public int getNumberOfFactors() {
return numberOfFactors;
}
/**
* @return Returns the timeDiscretization.
*/
public TimeDiscretizationInterface getTimeDiscretization() {
return timeDiscretization;
}
/**
* Returns the time for a given simulation time index.
*
* @param timeIndex Time index
* @return Returns the time for a given time index.
*/
public double getTime(int timeIndex) {
return timeDiscretization.getTime(timeIndex);
}
/**
* Returns the time index for a given simulation time.
*
* @param time A simulation time
* @return Returns the time index for a given time.
*/
public int getTimeIndex(double time) {
return timeDiscretization.getTimeIndex(time);
}
/**
* @return Returns the Brownian motion used in the generation of the process
*/
public BrownianMotionInterface getBrownianMotion() {
return brownianMotion;
}
/**
* @return Returns the scheme.
*/
public Scheme getScheme() {
return scheme;
}
/**
* A derived class may change the Brownian motion. This is only allowed prior to lazy initialization.
* The method should be used only while constructing new object. Do not use in flight.
*
* @param brownianMotion The brownianMotion to set.
*/
protected synchronized void setBrownianMotion(BrownianMotionInterface brownianMotion) {
if(discreteProcessWeights != null && discreteProcessWeights.length != 0) throw new RuntimeException("Tying to change lazy initialized immutable object after initialization.");
this.brownianMotion = brownianMotion;
}
/**
* @param scheme The scheme to set.
*/
public synchronized void setScheme(Scheme scheme) {
if(discreteProcessWeights != null && discreteProcessWeights.length != 0) throw new RuntimeException("Tying to change lazy initialized immutable object after initialization.");
this.scheme = scheme;
}
}