net.finmath.montecarlo.interestrate.modelplugins.AbstractLIBORCovarianceModelParametric Maven / Gradle / Ivy
/*
* (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
*
* Created on 20.05.2006
*/
package net.finmath.montecarlo.interestrate.modelplugins;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.logging.Level;
import java.util.logging.Logger;
import net.finmath.exception.CalculationException;
import net.finmath.montecarlo.BrownianMotion;
import net.finmath.montecarlo.interestrate.LIBORMarketModelInterface;
import net.finmath.montecarlo.interestrate.LIBORModelMonteCarloSimulation;
import net.finmath.montecarlo.interestrate.products.AbstractLIBORMonteCarloProduct;
import net.finmath.montecarlo.process.ProcessEulerScheme;
import net.finmath.optimizer.LevenbergMarquardt;
import net.finmath.optimizer.SolverException;
import net.finmath.time.TimeDiscretizationInterface;
/**
* Base class for parametric covariance models, see also {@link AbstractLIBORCovarianceModel}.
*
* Parametric models feature a parameter vector which can be inspected
* and modified for calibration purposes.
*
* The parameter vector may have zero length, which indicated that the model
* is not calibrateable.
*
* This class includes the implementation of a generic calibration algorithm.
* If you provide an arbitrary list of calibration products, the class can return
* a new instance where the parameters are chosen such that the (weighted) root-mean-square
* error of the difference of the value of the calibration products and given target
* values is minimized.
*
* @author Christian Fries
* @date 20.05.2006
* @date 23.02.2014
* @version 1.1
*/
public abstract class AbstractLIBORCovarianceModelParametric extends AbstractLIBORCovarianceModel {
private static final Logger logger = Logger.getLogger("net.finmath");
/**
* Constructor consuming time discretizations, which are handled by the super class.
*
* @param timeDiscretization The vector of simulation time discretization points.
* @param liborPeriodDiscretization The vector of tenor discretization points.
* @param numberOfFactors The number of factors to use (a factor reduction is performed)
*/
public AbstractLIBORCovarianceModelParametric(TimeDiscretizationInterface timeDiscretization, TimeDiscretizationInterface liborPeriodDiscretization, int numberOfFactors) {
super(timeDiscretization, liborPeriodDiscretization, numberOfFactors);
}
/**
* Get the parameters of determining this parametric
* covariance model. The parameters are usually free parameters
* which may be used in calibration.
*
* @return Parameter vector.
*/
public abstract double[] getParameter();
public abstract void setParameter(double[] parameter);
@Override
public abstract Object clone();
public AbstractLIBORCovarianceModelParametric getCloneWithModifiedParameters(double[] parameters) {
AbstractLIBORCovarianceModelParametric calibrationCovarianceModel = (AbstractLIBORCovarianceModelParametric)AbstractLIBORCovarianceModelParametric.this.clone();
calibrationCovarianceModel.setParameter(parameters);
return calibrationCovarianceModel;
}
public AbstractLIBORCovarianceModelParametric getCloneCalibrated(final LIBORMarketModelInterface calibrationModel, final AbstractLIBORMonteCarloProduct[] calibrationProducts, double[] calibrationTargetValues, double[] calibrationWeights) throws CalculationException {
return getCloneCalibrated(calibrationModel, calibrationProducts, calibrationTargetValues, calibrationWeights, null);
}
public AbstractLIBORCovarianceModelParametric getCloneCalibrated(final LIBORMarketModelInterface calibrationModel, final AbstractLIBORMonteCarloProduct[] calibrationProducts, final double[] calibrationTargetValues, double[] calibrationWeights, Map calibrationParameters) throws CalculationException {
double[] initialParameters = this.getParameter();
if(calibrationParameters == null) calibrationParameters = new HashMap();
Integer numberOfPathsParameter = (Integer)calibrationParameters.get("numberOfPaths");
Integer seedParameter = (Integer)calibrationParameters.get("seed");
Integer maxIterationsParameter = (Integer)calibrationParameters.get("maxIterations");
Double accuracyParameter = (Double)calibrationParameters.get("accuracy");
// @TODO: These constants should become parameters. The numberOfPaths and seed is only relevant if Monte-Carlo products are used for calibration.
int numberOfPaths = numberOfPathsParameter != null ? numberOfPathsParameter.intValue() : 2000;
int seed = seedParameter != null ? seedParameter.intValue() : 31415;
int maxIterations = maxIterationsParameter != null ? maxIterationsParameter.intValue() : 400;
double accuracy = accuracyParameter != null ? accuracyParameter.doubleValue() : 1E-7;
int numberOfThreadsForProductValuation = 2 * Math.min(2, Runtime.getRuntime().availableProcessors());
final ExecutorService executor = Executors.newFixedThreadPool(numberOfThreadsForProductValuation);
final BrownianMotion brownianMotion = new BrownianMotion(getTimeDiscretization(), getNumberOfFactors(), numberOfPaths, seed);
/*
* We allow for 5 simultaneous calibration models.
* Note: In the case of a Monte-Carlo calibration, the memory requirement is that of
* one model with 5 times the number of paths. In the case of an analytic calibration
* memory requirement is not the limiting factor.
*/
int numberOfThreads = 5;
LevenbergMarquardt optimizer = new LevenbergMarquardt(initialParameters, calibrationTargetValues, maxIterations, numberOfThreads)
{
// Calculate model values for given parameters
@Override
public void setValues(double[] parameters, double[] values) throws SolverException {
AbstractLIBORCovarianceModelParametric calibrationCovarianceModel = AbstractLIBORCovarianceModelParametric.this.getCloneWithModifiedParameters(parameters);
// Create a LIBOR market model with the new covariance structure.
LIBORMarketModelInterface model = calibrationModel.getCloneWithModifiedCovarianceModel(calibrationCovarianceModel);
ProcessEulerScheme process = new ProcessEulerScheme(brownianMotion);
final LIBORModelMonteCarloSimulation liborMarketModelMonteCarloSimulation = new LIBORModelMonteCarloSimulation(model, process);
ArrayList> valueFutures = new ArrayList>(calibrationProducts.length);
for(int calibrationProductIndex=0; calibrationProductIndex worker = new Callable() {
public Double call() throws SolverException {
try {
return calibrationProducts[workerCalibrationProductIndex].getValue(liborMarketModelMonteCarloSimulation);
} catch (CalculationException e) {
// We do not signal exceptions to keep the solver working and automatically exclude non-working calibration produtcs.
return calibrationTargetValues[workerCalibrationProductIndex];
} catch (Exception e) {
// We do not signal exceptions to keep the solver working and automatically exclude non-working calibration produtcs.
return calibrationTargetValues[workerCalibrationProductIndex];
}
}
};
if(executor != null) {
Future valueFuture = executor.submit(worker);
valueFutures.add(calibrationProductIndex, valueFuture);
}
else {
FutureTask valueFutureTask = new FutureTask(worker);
valueFutureTask.run();
valueFutures.add(calibrationProductIndex, valueFutureTask);
}
}
for(int calibrationProductIndex=0; calibrationProductIndex
© 2015 - 2025 Weber Informatics LLC | Privacy Policy