All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.modelplugins.AbstractLIBORCovarianceModelParametric Maven / Gradle / Ivy

/*
 * (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
 *
 * Created on 20.05.2006
 */
package net.finmath.montecarlo.interestrate.modelplugins;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.logging.Level;
import java.util.logging.Logger;

import net.finmath.exception.CalculationException;
import net.finmath.montecarlo.BrownianMotion;
import net.finmath.montecarlo.interestrate.LIBORMarketModelInterface;
import net.finmath.montecarlo.interestrate.LIBORModelMonteCarloSimulation;
import net.finmath.montecarlo.interestrate.products.AbstractLIBORMonteCarloProduct;
import net.finmath.montecarlo.process.ProcessEulerScheme;
import net.finmath.optimizer.LevenbergMarquardt;
import net.finmath.optimizer.SolverException;
import net.finmath.time.TimeDiscretizationInterface;

/**
 * Base class for parametric covariance models, see also {@link AbstractLIBORCovarianceModel}.
 * 
 * Parametric models feature a parameter vector which can be inspected
 * and modified for calibration purposes.
 * 
 * The parameter vector may have zero length, which indicated that the model
 * is not calibrateable.
 * 
 * This class includes the implementation of a generic calibration algorithm.
 * If you provide an arbitrary list of calibration products, the class can return
 * a new instance where the parameters are chosen such that the (weighted) root-mean-square 
 * error of the difference of the value of the calibration products and given target
 * values is minimized.
 * 
 * @author Christian Fries
 * @date 20.05.2006
 * @date 23.02.2014
 * @version 1.1
 */
public abstract class AbstractLIBORCovarianceModelParametric extends AbstractLIBORCovarianceModel {

	private static final Logger logger = Logger.getLogger("net.finmath");

	/**
	 * Constructor consuming time discretizations, which are handled by the super class.
	 * 
	 * @param timeDiscretization The vector of simulation time discretization points.
	 * @param liborPeriodDiscretization The vector of tenor discretization points.
	 * @param numberOfFactors The number of factors to use (a factor reduction is performed)
	 */
	public AbstractLIBORCovarianceModelParametric(TimeDiscretizationInterface timeDiscretization, TimeDiscretizationInterface liborPeriodDiscretization, int numberOfFactors) {
		super(timeDiscretization, liborPeriodDiscretization, numberOfFactors);
	}

	/**
	 * Get the parameters of determining this parametric
	 * covariance model. The parameters are usually free parameters
	 * which may be used in calibration.
	 * 
	 * @return Parameter vector.
	 */
	public abstract double[]	getParameter();

	public abstract void		setParameter(double[] parameter);

	@Override
	public abstract Object clone();

	public AbstractLIBORCovarianceModelParametric getCloneWithModifiedParameters(double[] parameters) {
		AbstractLIBORCovarianceModelParametric calibrationCovarianceModel = (AbstractLIBORCovarianceModelParametric)AbstractLIBORCovarianceModelParametric.this.clone();
		calibrationCovarianceModel.setParameter(parameters);

		return calibrationCovarianceModel;
	}

	public AbstractLIBORCovarianceModelParametric getCloneCalibrated(final LIBORMarketModelInterface calibrationModel, final AbstractLIBORMonteCarloProduct[] calibrationProducts, double[] calibrationTargetValues, double[] calibrationWeights) throws CalculationException {
		return getCloneCalibrated(calibrationModel, calibrationProducts, calibrationTargetValues, calibrationWeights, null);
	}

	public AbstractLIBORCovarianceModelParametric getCloneCalibrated(final LIBORMarketModelInterface calibrationModel, final AbstractLIBORMonteCarloProduct[] calibrationProducts, final double[] calibrationTargetValues, double[] calibrationWeights, Map calibrationParameters) throws CalculationException {

		double[] initialParameters = this.getParameter();

		if(calibrationParameters == null) calibrationParameters = new HashMap();
		Integer numberOfPathsParameter	= (Integer)calibrationParameters.get("numberOfPaths");
		Integer seedParameter			= (Integer)calibrationParameters.get("seed");
		Integer maxIterationsParameter	= (Integer)calibrationParameters.get("maxIterations");
		Double	accuracyParameter		= (Double)calibrationParameters.get("accuracy");

		// @TODO: These constants should become parameters. The numberOfPaths and seed is only relevant if Monte-Carlo products are used for calibration.
		int numberOfPaths	= numberOfPathsParameter != null ? numberOfPathsParameter.intValue() : 2000;
		int seed			= seedParameter != null ? seedParameter.intValue() : 31415;
		int maxIterations	= maxIterationsParameter != null ? maxIterationsParameter.intValue() : 400;
		double accuracy		= accuracyParameter != null ? accuracyParameter.doubleValue() : 1E-7;

		int numberOfThreadsForProductValuation = 2 * Math.min(2, Runtime.getRuntime().availableProcessors());
		final ExecutorService executor = Executors.newFixedThreadPool(numberOfThreadsForProductValuation);
		final BrownianMotion brownianMotion = new BrownianMotion(getTimeDiscretization(), getNumberOfFactors(), numberOfPaths, seed);

		/*
		 * We allow for 5 simultaneous calibration models.
		 * Note: In the case of a Monte-Carlo calibration, the memory requirement is that of
		 * one model with 5 times the number of paths. In the case of an analytic calibration
		 * memory requirement is not the limiting factor.
		 */
		int numberOfThreads = 5;			
		LevenbergMarquardt optimizer = new LevenbergMarquardt(initialParameters, calibrationTargetValues, maxIterations, numberOfThreads)
		{
			// Calculate model values for given parameters
			@Override
			public void setValues(double[] parameters, double[] values) throws SolverException {

				AbstractLIBORCovarianceModelParametric calibrationCovarianceModel = AbstractLIBORCovarianceModelParametric.this.getCloneWithModifiedParameters(parameters);

				// Create a LIBOR market model with the new covariance structure.
				LIBORMarketModelInterface model = calibrationModel.getCloneWithModifiedCovarianceModel(calibrationCovarianceModel);
				ProcessEulerScheme process = new ProcessEulerScheme(brownianMotion);
				final LIBORModelMonteCarloSimulation liborMarketModelMonteCarloSimulation =  new LIBORModelMonteCarloSimulation(model, process);

				ArrayList> valueFutures = new ArrayList>(calibrationProducts.length);
				for(int calibrationProductIndex=0; calibrationProductIndex worker = new  Callable() {
						public Double call() throws SolverException {
							try {
								return calibrationProducts[workerCalibrationProductIndex].getValue(liborMarketModelMonteCarloSimulation);
							} catch (CalculationException e) {
								// We do not signal exceptions to keep the solver working and automatically exclude non-working calibration produtcs.
								return calibrationTargetValues[workerCalibrationProductIndex];
							} catch (Exception e) {
								// We do not signal exceptions to keep the solver working and automatically exclude non-working calibration produtcs.
								return calibrationTargetValues[workerCalibrationProductIndex];
							}
						}
					};
					if(executor != null) {
						Future valueFuture = executor.submit(worker);
						valueFutures.add(calibrationProductIndex, valueFuture);
					}
					else {
						FutureTask valueFutureTask = new FutureTask(worker);
						valueFutureTask.run();
						valueFutures.add(calibrationProductIndex, valueFutureTask);
					}
				}
				for(int calibrationProductIndex=0; calibrationProductIndex




© 2015 - 2025 Weber Informatics LLC | Privacy Policy