All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.timeseries.models.parametric.DisplacedLognormal Maven / Gradle / Ivy

/*
 * (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
 * 
 * Created on 15.07.2012
 */


package net.finmath.timeseries.models.parametric;

import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;

import net.finmath.timeseries.HistoricalSimulationModel;

import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.optimization.GoalType;
import org.apache.commons.math3.optimization.PointValuePair;

/**
 * Displaced log-normal process with GARCH(1,1) volatility.
 * 
 * This class estimate the process
 * 
* d (X + a) = (X + a)/(b + a) σ dW , i.e. *
* d log(X + a) = σ/(b + a) dW , i.e. *
* where a > -min(X[i]) and thus X+a > 0 and b = 1 - min(X[i]) and σ is given by a GARCH(1,1) process. * The choice of b ensures that b+a ≥ 1. * For a=0 we have a log-normal process with volatility σ/(b + a). * For a=infinity we have a normal process with volatility σ. * * @author Christian Fries */ public class DisplacedLognormal implements HistoricalSimulationModel { private double[] values; private double lowerBoundDisplacement; private double upperBoundDisplacement = 10000000; private int windowIndexStart; private int windowIndexEnd; private int maxIterations = 1000000; public DisplacedLognormal(double[] values) { this.values = values; this.windowIndexStart = 0; this.windowIndexEnd = values.length-1; double valuesMin = Double.MAX_VALUE; for (int i = windowIndexStart; i <= windowIndexEnd; i++) { valuesMin = Math.min(values[i], valuesMin); } this.lowerBoundDisplacement = -valuesMin+1; } public DisplacedLognormal(double[] values, double lowerBoundDisplacement) { this.values = values; this.windowIndexStart = 0; this.windowIndexEnd = values.length-1; double valuesMin = Double.MAX_VALUE; for (int i = windowIndexStart; i <= windowIndexEnd; i++) { valuesMin = Math.min(values[i], valuesMin); } this.lowerBoundDisplacement = Math.max(-valuesMin+1,lowerBoundDisplacement); } public DisplacedLognormal(double[] values, int windowIndexStart, int windowIndexEnd) { this.values = values; this.windowIndexStart = windowIndexStart; this.windowIndexEnd = windowIndexEnd; double valuesMin = Double.MAX_VALUE; for (int i = windowIndexStart; i <= windowIndexEnd; i++) { valuesMin = Math.min(values[i], valuesMin); } this.lowerBoundDisplacement = -valuesMin+1; } public DisplacedLognormal(double[] values, double lowerBoundDisplacement, int windowIndexStart, int windowIndexEnd) { this.values = values; this.windowIndexStart = windowIndexStart; this.windowIndexEnd = windowIndexEnd; double valuesMin = Double.MAX_VALUE; for (int i = windowIndexStart; i <= windowIndexEnd; i++) { valuesMin = Math.min(values[i], valuesMin); } this.lowerBoundDisplacement = Math.max(-valuesMin+1,lowerBoundDisplacement); } /* (non-Javadoc) * @see net.finmath.timeseries.HistoricalSimulationModel#getCloneWithWindow(int, int) */ @Override public HistoricalSimulationModel getCloneWithWindow(int windowIndexStart, int windowIndexEnd) { return new DisplacedLognormal(this.values, windowIndexStart, windowIndexEnd); } public HistoricalSimulationModel getCloneWithWindow(double lowerBoundDisplacement, int windowIndexStart, int windowIndexEnd) { return new DisplacedLognormal(this.values, lowerBoundDisplacement, windowIndexStart, windowIndexEnd); } public double getLogLikelihoodForParameters(double omega, double alpha, double beta, double displacement) { double logLikelihood = 0.0; double volScaling = (1+Math.abs(displacement)); double volSquaredEstimate = 0.0; for (int i = windowIndexStart+1; i <= windowIndexEnd-1; i++) { double eval = volScaling * (Math.log((values[i]+displacement)/(values[i-1]+displacement))); volSquaredEstimate += eval*eval; } volSquaredEstimate /= (double)(windowIndexEnd-windowIndexStart); for (int i = windowIndexStart+1; i <= windowIndexEnd-1; i++) { double evalNext = volScaling * (Math.log((values[i+1]+displacement)/(values[i]+displacement))); logLikelihood += - Math.log(volSquaredEstimate) - 2 * Math.log((values[i+1]+displacement)/volScaling) - evalNext*evalNext / volSquaredEstimate; } logLikelihood += - Math.log(2 * Math.PI) * (double)(windowIndexEnd-windowIndexStart); logLikelihood *= 0.5; return logLikelihood; } public double getLastResidualForParameters(double omega, double alpha, double beta, double displacement) { double volScaling = (1+Math.abs(displacement)); double h = omega / (1.0 - alpha - beta); for (int i = windowIndexStart+1; i <= windowIndexEnd; i++) { double eval = volScaling * (Math.log((values[i]+displacement)/(values[i-1]+displacement))); // double eval = volScaling * (values[i]-values[i-1])/(values[i-1]+displacement); h = omega + alpha * eval * eval + beta * h; } return h; } public double[] getQuantilPredictionsForParameters(double omega, double alpha, double beta, double displacement, double[] quantiles) { double[] szenarios = new double[windowIndexEnd-windowIndexStart+1-1]; double volScaling = (1+Math.abs(displacement)); double volSquaredEstimate = 0.0; for (int i = windowIndexStart+1; i <= windowIndexEnd-1; i++) { double eval = volScaling * (Math.log((values[i]+displacement)/(values[i-1]+displacement))); volSquaredEstimate += eval*eval; } volSquaredEstimate /= (double)(windowIndexEnd-windowIndexStart); double vol = Math.sqrt(volSquaredEstimate) / volScaling; for (int i = windowIndexStart+1; i <= windowIndexEnd; i++) { double y = Math.log((values[i]+displacement)/(values[i-1]+displacement)); // double y = (values[i]-values[i-1])/(values[i-1]+displacement); szenarios[i-windowIndexStart-1] = y / vol; vol = Math.sqrt(volSquaredEstimate) / volScaling; } java.util.Arrays.sort(szenarios); double[] quantileValues = new double[quantiles.length]; for(int i=0; i getBestParameters() { return getBestParameters(null); } /* (non-Javadoc) * @see net.finmath.timeseries.HistoricalSimulationModel#getBestParameters(java.util.Map) */ @Override public Map getBestParameters(Map guess) { // Create the objective function for the solver class GARCHMaxLikelihoodFunction implements MultivariateFunction, Serializable { private static final long serialVersionUID = 7072187082052755854L; public double value(double[] variables) { /* * Transform variables: The solver variables are in (-\infty, \infty). * We transform the variable to the admissible domain for GARCH, that is * omega > 0, 0 < alpha < 1, 0 < beta < (1-alpha), displacement > lowerBoundDisplacement ?????? * ???? usually for GARCH the restrictions are written like omega > 0, alpha > 0, beta > 0, and alpha + beta < 1 */ double omega = Math.exp(variables[0]); double mucorr = Math.exp(-Math.exp(-variables[1])); double muema = Math.exp(-Math.exp(-variables[2])); double beta = mucorr * muema; double alpha = mucorr - beta; // double alpha = 1.0/(1.0+Math.exp(-variables[1])); // double beta = (1.0-alpha)*1.0/(1.0+Math.exp(-variables[2])); double displacementNormed = 1.0/(1.0+Math.exp(-variables[3])); double displacement = (upperBoundDisplacement-lowerBoundDisplacement)*displacementNormed+lowerBoundDisplacement; double logLikelihood = getLogLikelihoodForParameters(omega,alpha,beta,displacement); // Penalty to prevent solver from hitting the bounds logLikelihood -= Math.max(1E-30-omega,0)/1E-30; logLikelihood -= Math.max(1E-30-alpha,0)/1E-30; logLikelihood -= Math.max((alpha-1)+1E-30,0)/1E-30; logLikelihood -= Math.max(1E-30-beta,0)/1E-30; logLikelihood -= Math.max((beta-1)+1E-30,0)/1E-30; logLikelihood -= Math.max(1E-30-displacementNormed,0)/1E-30; logLikelihood -= Math.max((displacementNormed-1)+1E-30,0)/1E-30; return logLikelihood; } } GARCHMaxLikelihoodFunction objectiveFunction = new GARCHMaxLikelihoodFunction(); // Create a guess for the solver double guessOmega = 1.0; double guessAlpha = 0.2; double guessBeta = 0.2; double guessDisplacement = (lowerBoundDisplacement + upperBoundDisplacement) / 2.0; if(guess != null) { // A guess was provided, use that one guessOmega = guess.get("Omega"); guessAlpha = guess.get("Alpha"); guessBeta = guess.get("Beta"); guessDisplacement = guess.get("Displacement"); } // Constrain guess to admissible range guessOmega = restrictToOpenSet(guessOmega, 0.0, Double.MAX_VALUE); guessAlpha = restrictToOpenSet(guessAlpha, 0.0, 1.0); guessBeta = restrictToOpenSet(guessBeta, 0.0, 1.0-guessAlpha); guessDisplacement = restrictToOpenSet(guessDisplacement, lowerBoundDisplacement, upperBoundDisplacement); double guessMucorr = guessAlpha + guessBeta; double guessMuema = guessBeta / (guessAlpha+guessBeta); // Transform guess to solver coordinates double[] guessParameters = new double[4]; guessParameters[0] = Math.log(guessOmega); guessParameters[1] = -Math.log(-Math.log(guessMucorr)); guessParameters[2] = -Math.log(-Math.log(guessMuema)); guessParameters[3] = -Math.log(1.0/((guessDisplacement-lowerBoundDisplacement)/(upperBoundDisplacement-lowerBoundDisplacement))-1.0); // Seek optimal parameter configuration // org.apache.commons.math3.optimization.direct.BOBYQAOptimizer optimizer2 = new org.apache.commons.math3.optimization.direct.BOBYQAOptimizer(6); org.apache.commons.math3.optimization.direct.CMAESOptimizer optimizer2 = new org.apache.commons.math3.optimization.direct.CMAESOptimizer(); double[] bestParameters = null; try { PointValuePair result = optimizer2.optimize( maxIterations, objectiveFunction, GoalType.MAXIMIZE, guessParameters /* start point */ ); bestParameters = result.getPoint(); } catch(org.apache.commons.math3.exception.MathIllegalStateException e) { // Retry with new guess. This guess corresponds to omaga=1, alpha=0.5; beta=0.25; displacement=1+lowerBoundDisplacement; double[] guessParameters2 = {0.0, 0.0, 0.0, 10.0}; /* PointValuePair result = optimizer2.optimize( maxIterations, objectiveFunction, GoalType.MAXIMIZE, guessParameters2 );*/ System.out.println("Solver failed"); bestParameters = guessParameters2;//result.getPoint(); } // Transform parameters to GARCH parameters double omega = Math.exp(bestParameters[0]); double mucorr = Math.exp(-Math.exp(-bestParameters[1])); double muema = Math.exp(-Math.exp(-bestParameters[2])); double beta = mucorr * muema; double alpha = mucorr - beta; double displacementNormed = 1.0/(1.0+Math.exp(-bestParameters[3])); double displacement = (upperBoundDisplacement-lowerBoundDisplacement)*displacementNormed+lowerBoundDisplacement; double[] quantiles = {0.01, 0.05, 0.5}; double[] quantileValues = this.getQuantilPredictionsForParameters(omega, alpha, beta, displacement, quantiles); Map results = new HashMap(); results.put("Omega", omega); results.put("Alpha", alpha); results.put("Beta", beta); results.put("Displacement", displacement); results.put("Likelihood", this.getLogLikelihoodForParameters(omega, alpha, beta, displacement)); results.put("Vol", Math.sqrt(this.getLastResidualForParameters(omega, alpha, beta, displacement))); results.put("Quantile=1%", quantileValues[0]); results.put("Quantile=5%", quantileValues[1]); results.put("Quantile=50%", quantileValues[2]); return results; } private static double restrictToOpenSet(double value, double lowerBond, double upperBound) { value = Math.max(value, lowerBond * (1.0+Math.signum(lowerBond)*1E-15) + 1E-15); value = Math.min(value, upperBound * (1.0-Math.signum(upperBound)*1E-15) - 1E-15); return value; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy