net.finmath.marketdata.model.volatilities.CapletVolatilitiesParametricFourParameterPicewiseConstant Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
*
* Created on 30.08.2014
*/
package net.finmath.marketdata.model.volatilities;
import java.util.Calendar;
import net.finmath.marketdata.model.AnalyticModelInterface;
import net.finmath.time.TimeDiscretizationInterface;
/**
* A parametric caplet volatility surface created form the
* picewise constant (numerical integration) of the four parameter model
* for the instantaneous forward rate volatility given by
* \( \sigma(t) = (a + b t) \exp(- c t) + d \).
*
* In other words, the Black volatility for maturity T is given by
* \[ \sqrt{ \frac{1}{t_{n}} \sum_{i=0}^{n-1} ((a + b t_{i}) \exp(- c t_{i}) + d)^2 (t_{i+1}-t_{i}) } \],
* where \( t_{i} \) is given time discretization.
*
* @author Christian Fries
*/
public class CapletVolatilitiesParametricFourParameterPicewiseConstant extends AbstractVolatilitySurface {
private final double a,b,c,d;
private final TimeDiscretizationInterface timeDiscretization;
/**
* Create a model with parameters a,b,c,d.
*
* @param name The name of this volatility surface.
* @param referenceDate The reference date for this volatility surface, i.e., the date which defined t=0.
* @param a The parameter a
* @param b The parameter b
* @param c The parameter c
* @param d The parameter d
* @param timeDiscretization The timeDiscretization used in numerical integration.
*/
public CapletVolatilitiesParametricFourParameterPicewiseConstant(String name, Calendar referenceDate, double a, double b, double c, double d, TimeDiscretizationInterface timeDiscretization) {
super(name, referenceDate);
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.timeDiscretization = timeDiscretization;
this.quotingConvention = QuotingConvention.VOLATILITYLOGNORMAL;
}
/* (non-Javadoc)
* @see net.finmath.marketdata.model.volatilities.VolatilitySurfaceInterface#getValue(double, double, net.finmath.marketdata.model.volatilities.VolatilitySurfaceInterface.QuotingConvention)
*/
@Override
public double getValue(double maturity, double strike, QuotingConvention quotingConvention) {
return getValue(null, maturity, strike, quotingConvention);
}
/* (non-Javadoc)
* @see net.finmath.marketdata.model.volatilities.VolatilitySurfaceInterface#getValue(net.finmath.marketdata.model.AnalyticModelInterface, double, double, net.finmath.marketdata.model.volatilities.VolatilitySurfaceInterface.QuotingConvention)
*/
@Override
public double getValue(AnalyticModelInterface model, double maturity, double strike, QuotingConvention quotingConvention) {
if(maturity == 0) return 0;
/*
* Integral of the square of the instantaneous volatility function
* ((a + b * T) * Math.exp(- c * T) + d);
*/
double integratedVariance = 0.0;
for(int timeIndex = 0; timeIndex < timeDiscretization.getNumberOfTimeSteps(); timeIndex++) {
double time = timeDiscretization.getTime(timeIndex);
if(time > maturity) break;
double timeStep = timeDiscretization.getTimeStep(timeIndex);
double instantaneousVolatility = (a + b * (maturity-time)) * Math.exp(-c * (maturity-time)) + d;
integratedVariance += instantaneousVolatility*instantaneousVolatility * Math.min(maturity-time, timeStep);
}
double value = Math.sqrt(integratedVariance/maturity);
return convertFromTo(model, maturity, strike, value, this.quotingConvention, quotingConvention);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy