net.finmath.montecarlo.interestrate.modelplugins.LIBORCorrelationModelExponentialDecay Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
*
* Created on 20.05.2006
*/
package net.finmath.montecarlo.interestrate.modelplugins;
import net.finmath.functions.LinearAlgebra;
import net.finmath.time.TimeDiscretizationInterface;
/**
* Simple correlation model given by R, where R is a factor reduced matrix
* (see {@link net.finmath.functions.LinearAlgebra#factorReduction(double[][], int)}) created from the
* \( n \) Eigenvectors of \( \tilde{R} \) belonging to the \( n \) largest non-negative Eigenvalues,
* where \( \tilde{R} = \tilde{\rho}_{i,j} \) and \[ \tilde{\rho}_{i,j} = \exp( -\max(a,0) | T_{i}-T_{j} | ) \]
*
* For a more general model featuring three parameters see {@link LIBORCorrelationModelThreeParameterExponentialDecay}.
*
* @see net.finmath.functions.LinearAlgebra#factorReduction(double[][], int)
* @see LIBORCorrelationModelThreeParameterExponentialDecay
*
* @author Christian Fries
*/
public class LIBORCorrelationModelExponentialDecay extends LIBORCorrelationModel {
private final int numberOfFactors;
private double a;
private final boolean isCalibrateable;
private double[][] correlationMatrix;
private double[][] factorMatrix;
/**
* Create a correlation model with an exponentially decaying correlation structure and the given number of factors.
*
* @param timeDiscretization Simulation time dicretization. Not used.
* @param liborPeriodDiscretization Tenor time discretization, i.e., the \( T_{i} \)'s.
* @param numberOfFactors Number \( n \) of factors to be used.
* @param a Decay parameter. Should be positive. Negative values will be floored to 0.
* @param isCalibrateable If true, the parameter will become a free parameter in a calibration.
*/
public LIBORCorrelationModelExponentialDecay(TimeDiscretizationInterface timeDiscretization, TimeDiscretizationInterface liborPeriodDiscretization, int numberOfFactors, double a, boolean isCalibrateable) {
super(timeDiscretization, liborPeriodDiscretization);
this.numberOfFactors = numberOfFactors;
this.a = a;
this.isCalibrateable = isCalibrateable;
initialize(numberOfFactors, a);
}
public LIBORCorrelationModelExponentialDecay(TimeDiscretizationInterface timeDiscretization, TimeDiscretizationInterface liborPeriodDiscretization, int numberOfFactors, double a) {
super(timeDiscretization, liborPeriodDiscretization);
this.numberOfFactors = numberOfFactors;
this.a = a;
this.isCalibrateable = false;
initialize(numberOfFactors, a);
}
@Override
public void setParameter(double[] parameter) {
if(!isCalibrateable) return;
a = Math.max(parameter[0], 0.0);
initialize(numberOfFactors, a);
}
@Override
public Object clone() {
return new LIBORCorrelationModelExponentialDecay(timeDiscretization, liborPeriodDiscretization, numberOfFactors, a, isCalibrateable);
}
@Override
public double getFactorLoading(int timeIndex, int factor, int component) {
return factorMatrix[component][factor];
}
@Override
public double getCorrelation(int timeIndex, int component1, int component2) {
return correlationMatrix[component1][component2];
}
@Override
public int getNumberOfFactors() {
return factorMatrix[0].length;
}
private void initialize(int numberOfFactors, double a) {
/*
* Create instantaneous correlation matrix
*/
correlationMatrix = new double[liborPeriodDiscretization.getNumberOfTimeSteps()][liborPeriodDiscretization.getNumberOfTimeSteps()];
for(int row=0; row
© 2015 - 2025 Weber Informatics LLC | Privacy Policy