All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.modelplugins.LIBORVolatilityModelFourParameterExponentialForm Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
 *
 * Created on 08.08.2005
 */
package net.finmath.montecarlo.interestrate.modelplugins;

import net.finmath.montecarlo.RandomVariable;
import net.finmath.stochastic.RandomVariableInterface;
import net.finmath.time.TimeDiscretizationInterface;

/**
 * Implements the volatility model
 * \[
 * 	\sigma_{i}(t_{j}) = ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \text{.}
 * \]
 * 
 * The parameters here have some interpretation:
 * 
    *
  • The parameter a: an initial volatility level.
  • *
  • The parameter b: the slope at the short end (shortly before maturity).
  • *
  • The parameter c: exponential decay of the volatility in time-to-maturity.
  • *
  • The parameter d: if c > 0 this is the very long term volatility level.
  • *
* * Note that this model results in a terminal (Black 76) volatility which is given * by * \[ * \left( \sigma^{\text{Black}}_{i}(t_{k}) \right)^2 = \frac{1}{t_{k}} \sum_{j=0}^{k-1} \left( ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \right)^{2} (t_{j+1}-t_{j}) * \] * i.e., the instantaneous volatility is given by the picewise constant approximation of the function * \[ * \sigma_{i}(t) = ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d * \] * on the time discretization \( \{ t_{j} \} \). For the exact integration of this formula see {@link LIBORVolatilityModelFourParameterExponentialFormIntegrated}. * * @author Christian Fries */ public class LIBORVolatilityModelFourParameterExponentialForm extends LIBORVolatilityModel { private double a; private double b; private double c; private double d; private boolean isCalibrateable = false; /** * Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d * * @param timeDiscretization The simulation time discretization tj. * @param liborPeriodDiscretization The period time discretization Ti. * @param a The parameter a: an initial volatility level. * @param b The parameter b: the slope at the short end (shortly before maturity). * @param c The parameter c: exponential decay of the volatility in time-to-maturity. * @param d The parameter d: if c > 0 this is the very long term volatility level. * @param isCalibrateable Set this to true, if the parameters are available for calibration. */ public LIBORVolatilityModelFourParameterExponentialForm(TimeDiscretizationInterface timeDiscretization, TimeDiscretizationInterface liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable) { super(timeDiscretization, liborPeriodDiscretization); this.a = a; this.b = b; this.c = c; this.d = d; this.isCalibrateable = isCalibrateable; } @Override public double[] getParameter() { if(!isCalibrateable) return null; double[] parameter = new double[4]; parameter[0] = a; parameter[1] = b; parameter[2] = c; parameter[3] = d; return parameter; } @Override public void setParameter(double[] parameter) { if(!isCalibrateable) return; this.a = parameter[0]; this.b = parameter[1]; this.c = parameter[2]; this.d = parameter[3]; } /* (non-Javadoc) * @see net.finmath.montecarlo.interestrate.modelplugins.LIBORVolatilityModel#getVolatility(int, int) */ @Override public RandomVariableInterface getVolatility(int timeIndex, int liborIndex) { // Create a very simple volatility model here double time = getTimeDiscretization().getTime(timeIndex); double maturity = getLiborPeriodDiscretization().getTime(liborIndex); double timeToMaturity = maturity-time; double volatilityInstanteaneous; if(timeToMaturity <= 0) { volatilityInstanteaneous = 0.0; // This forward rate is already fixed, no volatility } else { volatilityInstanteaneous = (a + b * timeToMaturity) * Math.exp(-c * timeToMaturity) + d; } if(volatilityInstanteaneous < 0.0) volatilityInstanteaneous = Math.max(volatilityInstanteaneous,0.0); return new RandomVariable(getTimeDiscretization().getTime(timeIndex),volatilityInstanteaneous); } @Override public Object clone() { return new LIBORVolatilityModelFourParameterExponentialForm( super.getTimeDiscretization(), super.getLiborPeriodDiscretization(), a, b, c, d, isCalibrateable ); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy