net.finmath.montecarlo.interestrate.modelplugins.LIBORVolatilityModelFourParameterExponentialForm Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
*
* Created on 08.08.2005
*/
package net.finmath.montecarlo.interestrate.modelplugins;
import net.finmath.montecarlo.RandomVariable;
import net.finmath.stochastic.RandomVariableInterface;
import net.finmath.time.TimeDiscretizationInterface;
/**
* Implements the volatility model
* \[
* \sigma_{i}(t_{j}) = ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \text{.}
* \]
*
* The parameters here have some interpretation:
*
* - The parameter a: an initial volatility level.
* - The parameter b: the slope at the short end (shortly before maturity).
* - The parameter c: exponential decay of the volatility in time-to-maturity.
* - The parameter d: if c > 0 this is the very long term volatility level.
*
*
* Note that this model results in a terminal (Black 76) volatility which is given
* by
* \[
* \left( \sigma^{\text{Black}}_{i}(t_{k}) \right)^2 = \frac{1}{t_{k}} \sum_{j=0}^{k-1} \left( ( a + b (T_{i}-t_{j}) ) exp(-c (T_{i}-t_{j})) + d \right)^{2} (t_{j+1}-t_{j})
* \]
* i.e., the instantaneous volatility is given by the picewise constant approximation of the function
* \[
* \sigma_{i}(t) = ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d
* \]
* on the time discretization \( \{ t_{j} \} \). For the exact integration of this formula see {@link LIBORVolatilityModelFourParameterExponentialFormIntegrated}.
*
* @author Christian Fries
*/
public class LIBORVolatilityModelFourParameterExponentialForm extends LIBORVolatilityModel {
private double a;
private double b;
private double c;
private double d;
private boolean isCalibrateable = false;
/**
* Creates the volatility model σi(tj) = ( a + b * (Ti-tj) ) * exp(-c (Ti-tj)) + d
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param a The parameter a: an initial volatility level.
* @param b The parameter b: the slope at the short end (shortly before maturity).
* @param c The parameter c: exponential decay of the volatility in time-to-maturity.
* @param d The parameter d: if c > 0 this is the very long term volatility level.
* @param isCalibrateable Set this to true, if the parameters are available for calibration.
*/
public LIBORVolatilityModelFourParameterExponentialForm(TimeDiscretizationInterface timeDiscretization, TimeDiscretizationInterface liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable) {
super(timeDiscretization, liborPeriodDiscretization);
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.isCalibrateable = isCalibrateable;
}
@Override
public double[] getParameter() {
if(!isCalibrateable) return null;
double[] parameter = new double[4];
parameter[0] = a;
parameter[1] = b;
parameter[2] = c;
parameter[3] = d;
return parameter;
}
@Override
public void setParameter(double[] parameter) {
if(!isCalibrateable) return;
this.a = parameter[0];
this.b = parameter[1];
this.c = parameter[2];
this.d = parameter[3];
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.interestrate.modelplugins.LIBORVolatilityModel#getVolatility(int, int)
*/
@Override
public RandomVariableInterface getVolatility(int timeIndex, int liborIndex) {
// Create a very simple volatility model here
double time = getTimeDiscretization().getTime(timeIndex);
double maturity = getLiborPeriodDiscretization().getTime(liborIndex);
double timeToMaturity = maturity-time;
double volatilityInstanteaneous;
if(timeToMaturity <= 0)
{
volatilityInstanteaneous = 0.0; // This forward rate is already fixed, no volatility
}
else
{
volatilityInstanteaneous = (a + b * timeToMaturity) * Math.exp(-c * timeToMaturity) + d;
}
if(volatilityInstanteaneous < 0.0) volatilityInstanteaneous = Math.max(volatilityInstanteaneous,0.0);
return new RandomVariable(getTimeDiscretization().getTime(timeIndex),volatilityInstanteaneous);
}
@Override
public Object clone() {
return new LIBORVolatilityModelFourParameterExponentialForm(
super.getTimeDiscretization(),
super.getLiborPeriodDiscretization(),
a,
b,
c,
d,
isCalibrateable
);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy