net.finmath.montecarlo.interestrate.modelplugins.LIBORVolatilityModelFourParameterExponentialFormIntegrated Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
*
* Created on 08.08.2005
*/
package net.finmath.montecarlo.interestrate.modelplugins;
import net.finmath.marketdata.model.volatilities.CapletVolatilitiesParametric;
import net.finmath.marketdata.model.volatilities.VolatilitySurfaceInterface.QuotingConvention;
import net.finmath.montecarlo.RandomVariable;
import net.finmath.stochastic.RandomVariableInterface;
import net.finmath.time.TimeDiscretizationInterface;
/**
* Implements the volatility model
* \[
* \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.}
* \]
*
* The parameters here have some interpretation:
*
* - The parameter a: an initial volatility level.
* - The parameter b: the slope at the short end (shortly before maturity).
* - The parameter c: exponential decay of the volatility in time-to-maturity.
* - The parameter d: if c > 0 this is the very long term volatility level.
*
*
* Note that this model results in a terminal (Black 76) volatility which is given
* by
* \[
* \left( \sigma^{\text{Black}}_{i}(t_{k}) \right)^2 = \frac{1}{t_{k} \int_{0}^{t_{k}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t \text{.}
* \]
*
* @author Christian Fries
*/
public class LIBORVolatilityModelFourParameterExponentialFormIntegrated extends LIBORVolatilityModel {
private double a;
private double b;
private double c;
private double d;
private boolean isCalibrateable = false;
/**
* Creates the volatility model
* \[
* \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.}
* \]
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param a The parameter a: an initial volatility level.
* @param b The parameter b: the slope at the short end (shortly before maturity).
* @param c The parameter c: exponential decay of the volatility in time-to-maturity.
* @param d The parameter d: if c > 0 this is the very long term volatility level.
* @param isCalibrateable Set this to true, if the parameters are available for calibration.
*/
public LIBORVolatilityModelFourParameterExponentialFormIntegrated(TimeDiscretizationInterface timeDiscretization, TimeDiscretizationInterface liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable) {
super(timeDiscretization, liborPeriodDiscretization);
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.isCalibrateable = isCalibrateable;
}
@Override
public double[] getParameter() {
if(!isCalibrateable) return null;
double[] parameter = new double[4];
parameter[0] = a;
parameter[1] = b;
parameter[2] = c;
parameter[3] = d;
return parameter;
}
@Override
public void setParameter(double[] parameter) {
if(!isCalibrateable) return;
this.a = parameter[0];
this.b = parameter[1];
this.c = parameter[2];
this.d = parameter[3];
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.interestrate.modelplugins.LIBORVolatilityModel#getVolatility(int, int)
*/
@Override
public RandomVariableInterface getVolatility(int timeIndex, int liborIndex) {
// Create a very simple volatility model here
double timeStart = getTimeDiscretization().getTime(timeIndex);
double timeEnd = getTimeDiscretization().getTime(timeIndex+1);
double maturity = getLiborPeriodDiscretization().getTime(liborIndex);
CapletVolatilitiesParametric cap = new CapletVolatilitiesParametric("", null, a, b, c, d);
double volStart = cap.getValue(maturity-timeStart, 0, QuotingConvention.VOLATILITYLOGNORMAL);
double volEnd = cap.getValue(maturity-timeEnd, 0, QuotingConvention.VOLATILITYLOGNORMAL);
return new RandomVariable(
Math.sqrt(
(
volStart*volStart*(maturity-timeStart)
-
volEnd*volEnd*(maturity-timeEnd)
)/(timeEnd-timeStart)
));
}
@Override
public Object clone() {
return new LIBORVolatilityModelFourParameterExponentialFormIntegrated(
super.getTimeDiscretization(),
super.getLiborPeriodDiscretization(),
a,
b,
c,
d,
isCalibrateable
);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy