net.finmath.montecarlo.process.ProcessEulerScheme Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. All rights reserved. Contact: [email protected].
*
* Created on 18.11.2012
*/
package net.finmath.montecarlo.process;
import java.util.Vector;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import net.finmath.montecarlo.BrownianMotionInterface;
import net.finmath.optimizer.SolverException;
import net.finmath.stochastic.RandomVariableInterface;
/**
* This class implements some numerical schemes for multi-dimensional multi-factor Ito process.
*
* It features the standard Euler scheme and the standard predictor-corrector Euler scheme
* for Y, then applies the state space transform \( X = f(Y) \). For the standard Euler scheme
* the process Y is discretized as
* \[
* Y(t_{i+1}) = Y(t_{i}) + \mu(t_{i}) \Delta t_{i} + \sigma(t_{i}) \Delta W(t_{i}} \text{.}
* \]
*
* Hence, using the state space transform, it is possible to create a log-Eurler scheme, i.e.,
* \[
* X(t_{i+1}) = X(t_{i}) \cdot \exp\left( (\mu(t_{i}) - \frac{1}{2} sigma(t_{i})^2) \Delta t_{i} + \sigma(t_{i}) \Delta W(t_{i}} \right) \text{.}
* \]
*
* The dimension is called numberOfComponents
here. The default for numberOfFactors
is 1.
*
* @author Christian Fries
* @see AbstractProcessInterface The interface definition contains more details.
* @version 1.4
*/
public class ProcessEulerScheme extends AbstractProcess {
public enum Scheme {
EULER, PREDICTOR_CORRECTOR
};
private BrownianMotionInterface brownianMotion;
private Scheme scheme = Scheme.EULER;
// Uses locally for multi-threadded calculation.
private ExecutorService executor;
/*
* The storage of the simulated stochastic process.
*/
private transient RandomVariableInterface[][] discreteProcess = null;
private transient RandomVariableInterface[] discreteProcessWeights;
/**
* @param brownianMotion The Brownian driver of the process
*/
public ProcessEulerScheme(BrownianMotionInterface brownianMotion) {
super(brownianMotion.getTimeDiscretization());
this.brownianMotion = brownianMotion;
}
/**
* This method returns the realization of the process at a certain time index.
*
* @param timeIndex Time index at which the process should be observed
* @return A vector of process realizations (on path)
*/
@Override
public RandomVariableInterface getProcessValue(int timeIndex, int componentIndex) {
// Thread safe lazy initialization
synchronized(this) {
if (discreteProcess == null || discreteProcess.length == 0) {
doPrecalculateProcess();
}
}
if(discreteProcess[timeIndex][componentIndex] == null) {
throw new NullPointerException("Generation of process component " + componentIndex + " at time index " + timeIndex + " failed. Likely due to out of memory");
}
// Return value of process
return discreteProcess[timeIndex][componentIndex];
}
/**
* This method returns the weights of a weighted Monte Carlo method (the probability density).
*
* @param timeIndex Time index at which the process should be observed
* @return A vector of positive weights
*/
@Override
public RandomVariableInterface getMonteCarloWeights(int timeIndex) {
// Thread safe lazy initialization
synchronized(this) {
if (discreteProcessWeights == null || discreteProcessWeights.length == 0) {
doPrecalculateProcess();
}
}
// Return value of process
return discreteProcessWeights[timeIndex];
}
/**
* Calculates the whole (discrete) process.
*/
private void doPrecalculateProcess() {
if (discreteProcess != null && discreteProcess.length != 0) return;
final int numberOfPaths = this.getNumberOfPaths();
final int numberOfFactors = this.getNumberOfFactors();
final int numberOfComponents = this.getNumberOfComponents();
// Allocate Memory
discreteProcess = new RandomVariableInterface[getTimeDiscretization().getNumberOfTimeSteps() + 1][getNumberOfComponents()];
discreteProcessWeights = new RandomVariableInterface[getTimeDiscretization().getNumberOfTimeSteps() + 1];
// Set initial Monte-Carlo weights
discreteProcessWeights[0] = brownianMotion.getRandomVariableForConstant(1.0 / numberOfPaths);
// Set initial value
RandomVariableInterface[] initialState = getInitialState();
final RandomVariableInterface[] currentState = new RandomVariableInterface[numberOfComponents];
for (int componentIndex = 0; componentIndex < numberOfComponents; componentIndex++) {
currentState[componentIndex] = initialState[componentIndex];
discreteProcess[0][componentIndex] = applyStateSpaceTransform(componentIndex, currentState[componentIndex]);
}
/*
* Evolve the process using an Euler scheme.
* The evolution is performed multi-threadded.
* Each component of the vector runs in its own thread.
*/
// We do not allocate more threads the twice the number of processors.
int numberOfThreads = Math.min(Math.max(2 * Runtime.getRuntime().availableProcessors(),1),numberOfComponents);
executor = Executors.newFixedThreadPool(numberOfThreads);
// Evolve process
for (int timeIndex2 = 1; timeIndex2 < getTimeDiscretization().getNumberOfTimeSteps()+1; timeIndex2++) {
final int timeIndex = timeIndex2;
// Generate process from timeIndex-1 to timeIndex
final double deltaT = getTime(timeIndex) - getTime(timeIndex - 1);
// Fetch drift vector
RandomVariableInterface[] drift = getDrift(timeIndex - 1, discreteProcess[timeIndex - 1], null);
// Calculate new realization
Vector> discreteProcessAtCurrentTimeIndex = new Vector>(numberOfComponents);
discreteProcessAtCurrentTimeIndex.setSize(numberOfComponents);
for (int componentIndex2 = 0; componentIndex2 < numberOfComponents; componentIndex2++) {
final int componentIndex = componentIndex2;
final RandomVariableInterface driftOfComponent = drift[componentIndex];
// Check if the component process has stopped to evolve
if (driftOfComponent == null) continue;
Callable worker = new Callable() {
public RandomVariableInterface call() throws SolverException {
RandomVariableInterface[] factorLoadings = getFactorLoading(timeIndex - 1, componentIndex, discreteProcess[timeIndex - 1]);
// Check if the component process has stopped to evolve
if (factorLoadings == null) return null;
// Temp storage for variance and diffusion
RandomVariableInterface diffusionOfComponent = brownianMotion.getRandomVariableForConstant(0.0);
// Generate values for diffusionOfComponent and varianceOfComponent
for (int factor = 0; factor < numberOfFactors; factor++) {
RandomVariableInterface factorLoading = factorLoadings[factor];
RandomVariableInterface brownianIncrement = brownianMotion.getBrownianIncrement(timeIndex - 1, factor);
diffusionOfComponent = diffusionOfComponent.addProduct(factorLoading, brownianIncrement);
}
RandomVariableInterface increment = diffusionOfComponent;
if(driftOfComponent != null) increment = increment.addProduct(driftOfComponent, deltaT);
// Add increment to state and applyStateSpaceTransform
currentState[componentIndex] = currentState[componentIndex].add(increment);
// Transform the state space to the value space and return it.
return applyStateSpaceTransform(componentIndex, currentState[componentIndex]);
}
};
// The following line will add the result of the calculation to the vector discreteProcessAtCurrentTimeIndex
discreteProcessAtCurrentTimeIndex.set(componentIndex, executor.submit(worker));
}
// Fetch results and move to discreteProcess[timeIndex]
for (int componentIndex = 0; componentIndex < numberOfComponents; componentIndex++) {
try {
Future discreteProcessAtCurrentTimeIndexAndComponent = discreteProcessAtCurrentTimeIndex.get(componentIndex);
if(discreteProcessAtCurrentTimeIndexAndComponent != null) discreteProcess[timeIndex][componentIndex] = discreteProcessAtCurrentTimeIndexAndComponent.get();
else discreteProcess[timeIndex][componentIndex] = null;
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (ExecutionException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
if (scheme == Scheme.PREDICTOR_CORRECTOR) {
// Apply corrector step to realizations at next time step
RandomVariableInterface[] driftWithPredictor = getDrift(timeIndex - 1, discreteProcess[timeIndex], null);
for (int componentIndex = 0; componentIndex < getNumberOfComponents(); componentIndex++) {
RandomVariableInterface driftWithPredictorOfComponent = driftWithPredictor[componentIndex];
RandomVariableInterface driftWithoutPredictorOfComponent = drift[componentIndex];
if (driftWithPredictorOfComponent == null || driftWithoutPredictorOfComponent == null) continue;
// Calculated the predictor corrector drift adjustment
RandomVariableInterface driftAdjustment = driftWithPredictorOfComponent.sub(driftWithoutPredictorOfComponent).div(2.0).mult(deltaT);
// Add drift adjustment
currentState[componentIndex] = currentState[componentIndex].add(driftAdjustment);
// Reapply state space transform
discreteProcess[timeIndex][componentIndex] = applyStateSpaceTransform(componentIndex, currentState[componentIndex]);
} // End for(componentIndex)
} // End if(scheme == Scheme.PREDICTOR_CORRECTOR)
// Set Monte-Carlo weights
discreteProcessWeights[timeIndex] = discreteProcessWeights[timeIndex - 1];
} // End for(timeIndex)
try {
executor.shutdown();
}
catch(SecurityException e) {
// @TODO Improve exception handling here
}
}
/**
* Reset all precalculated values
*/
private synchronized void reset() {
this.discreteProcess = null;
this.discreteProcessWeights = null;
}
/**
* @return Returns the numberOfPaths.
*/
@Override
public int getNumberOfPaths() {
return this.brownianMotion.getNumberOfPaths();
}
/**
* @return Returns the numberOfFactors.
*/
@Override
public int getNumberOfFactors() {
return this.brownianMotion.getNumberOfFactors();
}
/**
* @param seed The seed to set.
* @deprecated The class will soon be changed to be immutable
*/
@Deprecated
public void setSeed(int seed) {
// Create a new Brownian motion
this.setBrownianMotion(new net.finmath.montecarlo.BrownianMotion(
brownianMotion.getTimeDiscretization(), brownianMotion
.getNumberOfFactors(), brownianMotion
.getNumberOfPaths(), seed));
// Force recalculation of the process
this.reset();
}
/**
* @return Returns the Brownian motion used in the generation of the process
*/
@Override
public BrownianMotionInterface getBrownianMotion() {
return brownianMotion;
}
/**
* @param brownianMotion The brownianMotion to set.
* @deprecated Do not use anymore. Processes should be immutable.
*/
@Deprecated
public void setBrownianMotion(
net.finmath.montecarlo.BrownianMotion brownianMotion) {
this.brownianMotion = brownianMotion;
// Force recalculation of the process
this.reset();
}
/**
* @return Returns the scheme.
*/
public Scheme getScheme() {
return scheme;
}
/**
* @param scheme The scheme to set.
* @deprecated Do not use anymore. Processes should be immutable.
*/
@Deprecated
public void setScheme(Scheme scheme) {
this.scheme = scheme;
// Force recalculation of the process
this.reset();
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.process.AbstractProcess#clone()
*/
@Override
public ProcessEulerScheme clone() {
return new ProcessEulerScheme(getBrownianMotion());
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.process.AbstractProcess#getCloneWithModifiedSeed(int)
*/
@Override
public Object getCloneWithModifiedSeed(int seed) {
return new ProcessEulerScheme((BrownianMotionInterface)getBrownianMotion().getCloneWithModifiedSeed(seed));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy