net.finmath.integration.MonteCarloIntegrator Maven / Gradle / Ivy
package net.finmath.integration;
import java.util.function.DoubleUnaryOperator;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import net.finmath.randomnumbers.MersenneTwister;
/**
* A simple integrator using Monte-Carlo integration.
*
* The constructor has an optional argument to allow
* parallel function evaluation. In that case, the integration rule
* uses Java 8 parallel streams to evaluate.
*
* @author Christian Fries
*/
public class MonteCarloIntegrator extends AbstractRealIntegral{
private int numberOfEvaluationPoints;
private int seed = 3141;
/**
* Create an integrator using Simpson's rule.
*
* @param lowerBound Lower bound of the integral.
* @param upperBound Upper bound of the integral.
* @param numberOfEvaluationPoints Maximum number of evaluation points to be used, must be greater or equal to 3.
* @param useParallelEvaluation If true, the integration rule will perform parallel evaluation of the integrand.
*/
public MonteCarloIntegrator(double lowerBound, double upperBound, int numberOfEvaluationPoints, boolean useParallelEvaluation) {
super(lowerBound, upperBound);
if(numberOfEvaluationPoints < 3) throw new IllegalArgumentException("Invalid numberOfEvaluationPoints.");
this.numberOfEvaluationPoints = numberOfEvaluationPoints;
}
/**
* Create an integrator using Simpson's rule.
*
* @param lowerBound Lower bound of the integral.
* @param upperBound Upper bound of the integral.
* @param numberOfEvaluationPoints Maximum number of evaluation points to be used.
*/
public MonteCarloIntegrator(double lowerBound, double upperBound, int numberOfEvaluationPoints) {
this(lowerBound, upperBound, numberOfEvaluationPoints, false);
}
/* (non-Javadoc)
* @see net.finmath.integration.AbstractRealIntegral#integrate(java.util.function.DoubleUnaryOperator)
*/
@Override
public double integrate(DoubleUnaryOperator integrand) {
double lowerBound = getLowerBound();
double upperBound = getUpperBound();
double range = upperBound-lowerBound;
// Create random number sequence generator (we use MersenneTwister)
MersenneTwister mersenneTwister = new MersenneTwister(seed);
DoubleStream randomNumberSequence = IntStream.range(0, numberOfEvaluationPoints).sequential().mapToDouble(i -> mersenneTwister.nextDouble());
return randomNumberSequence.map(x -> (integrand.applyAsDouble(lowerBound + x * range))).sum() * range / numberOfEvaluationPoints;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy