All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.RandomVariableLowMemory Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 09.02.2006
 */
package net.finmath.montecarlo;

import java.util.Arrays;
import java.util.function.DoubleBinaryOperator;
import java.util.function.DoubleUnaryOperator;
import java.util.function.IntToDoubleFunction;
import java.util.stream.DoubleStream;

import org.apache.commons.math3.util.FastMath;

import net.finmath.functions.DoubleTernaryOperator;
import net.finmath.stochastic.RandomVariableInterface;

/**
 * The class RandomVariable represents a random variable being the evaluation of a stochastic process
 * at a certain time within a Monte-Carlo simulation.
 * It is thus essentially a vector of floating point numbers - the realizations - together with a double - the time.
 * The index of the vector represents path.
 * The class may also be used for non-stochastic quantities which may potentially be stochastic
 * (e.g. volatility). If only non-stochastic random variables are involved in an operation the class uses
 * optimized code.
 *
 * Accesses performed exclusively through the interface
 * RandomVariableInterface is thread safe (and does not mutate the class).
 *
 * This implementation uses floats for the realizations (consuming less memory compared to using doubles). However,
 * the calculation of the average is performed using double precision.
 * 
 * @author Christian Fries
 * @version 1.8
 */
public class RandomVariableLowMemory implements RandomVariableInterface {

	private static final long serialVersionUID = 7620120320663270600L;

	private final double      time;	                // Time (filtration)

	// Data model for the stochastic case (otherwise null)
	private final float[]    realizations;           // Realizations

	// Data model for the non-stochastic case (if realizations==null)
	private final double      valueIfNonStochastic;

	/**
	 * Create a random variable from a given other implementation of RandomVariableInterface.
	 *
	 * @param value Object implementing RandomVariableInterface.
	 */
	public RandomVariableLowMemory(RandomVariableInterface value) {
		super();
		this.time = value.getFiltrationTime();
		this.realizations = value.isDeterministic() ? null : getFloatArray(value.getRealizations());
		this.valueIfNonStochastic = value.isDeterministic() ? value.get(0) : Double.NaN;
	}

	/**
	 * Create a non stochastic random variable, i.e. a constant.
	 *
	 * @param value the value, a constant.
	 */
	public RandomVariableLowMemory(double value) {
		this(-Double.MAX_VALUE, value);
	}

	/**
	 * Create a non stochastic random variable, i.e. a constant.
	 *
	 * @param time the filtration time, set to 0.0 if not used.
	 * @param value the value, a constant.
	 */
	public RandomVariableLowMemory(double time, double value) {
		super();
		this.time = time;
		this.realizations = null;
		this.valueIfNonStochastic = value;
	}

	/**
	 * Create a non stochastic random variable, i.e. a constant.
	 *
	 * @param time the filtration time, set to 0.0 if not used.
	 * @param numberOfPath The number of paths.
	 * @param value the value, a constant.
	 */
	public RandomVariableLowMemory(double time, int numberOfPath, double value) {
		super();
		this.time = time;
		this.realizations = new float[numberOfPath];
		java.util.Arrays.fill(this.realizations, (float)value);
		this.valueIfNonStochastic = Double.NaN;
	}

	/**
	 * Create a stochastic random variable.
	 *
	 * @param time the filtration time, set to 0.0 if not used.
	 * @param realisations the vector of realizations.
	 */
	public RandomVariableLowMemory(double time, float[] realisations) {
		super();
		this.time = time;
		this.realizations = realisations;
		this.valueIfNonStochastic = Double.NaN;
	}

	/**
	 * Create a stochastic random variable.
	 *
	 * @param time the filtration time, set to 0.0 if not used.
	 * @param realisations the vector of realizations.
	 */
	public RandomVariableLowMemory(double time, double[] realisations) {
		super();
		this.time = time;
		this.realizations = getFloatArray(realisations);
		this.valueIfNonStochastic = Double.NaN;
	}

	private float[] getFloatArray(double[] arrayOfDouble) {
		float[] arrayOfFloat = new float[arrayOfDouble.length];
		for(int i=0; i quantileEnd) return getQuantileExpectation(quantileEnd, quantileStart);

		float[] realizationsSorted = realizations.clone();
		java.util.Arrays.sort(realizationsSorted);

		int indexOfQuantileValueStart	= Math.min(Math.max((int)Math.round((size()+1) * quantileStart - 1), 0), size()-1);
		int indexOfQuantileValueEnd		= Math.min(Math.max((int)Math.round((size()+1) * quantileEnd - 1), 0), size()-1);

		double quantileExpectation = 0.0;
		for (int i=indexOfQuantileValueStart; i<=indexOfQuantileValueEnd;i++) {
			quantileExpectation += realizationsSorted[i];
		}
		quantileExpectation /= indexOfQuantileValueEnd-indexOfQuantileValueStart+1;

		return quantileExpectation;
	}

	/* (non-Javadoc)
	 * @see net.finmath.stochastic.RandomVariableInterface#getHistogram()
	 */
	@Override
	public double[] getHistogram(double[] intervalPoints)
	{
		double[] histogramValues = new double[intervalPoints.length+1];

		if(isDeterministic()) {
			/*
			 * If the random variable is deterministic we will return an array
			 * consisting of 0's and one and only one 1.
			 */
			java.util.Arrays.fill(histogramValues, 0.0);
			for (int intervalIndex=0; intervalIndex intervalPoints[intervalIndex]) {
					histogramValues[intervalIndex] = 1.0;
					break;
				}
			}
			histogramValues[intervalPoints.length] = 1.0;
		}
		else {
			/*
			 * If the random variable is deterministic we will return an array
			 * representing a density, where the sum of the entries is one.
			 * There is one exception:
			 * If the size of the random variable is 0, all entries will be zero.
			 */
			float[] realizationsSorted = realizations.clone();
			java.util.Arrays.sort(realizationsSorted);

			int sampleIndex=0;
			for (int intervalIndex=0; intervalIndex 0) {
				for(int i=0; i {
				return valueIfNonStochastic;
			});
		}
		else {
			return Arrays.stream(getDoubleArray(realizations));
		}
	}

	@Override
	public Double doubleValue() {
		if(isDeterministic()) return valueIfNonStochastic;
		else throw new UnsupportedOperationException("The random variable is non-deterministic");
	}

	@Override
	public double[] getRealizations() {
		if(isDeterministic()) {
			double[] result = new double[1];
			result[0] = get(0);
			return result;
		}
		else {
			return getDoubleArray(realizations);
		}
	}

	public IntToDoubleFunction getOperator() {
		if(isDeterministic()) {
			return i -> valueIfNonStochastic;
		}
		else {
			return i -> realizations[i];
		}
	}

	@Override
	public RandomVariableInterface apply(DoubleUnaryOperator operator) {
		if(isDeterministic()) {
			return new RandomVariable(time, operator.applyAsDouble(valueIfNonStochastic));
		}
		else
		{
			// Still faster than a parallel stream (2014.04)
			double[] result = new double[this.realizations.length];
			for(int i=0; i operator.applyAsDouble(argument0Operator.applyAsDouble(i), argument1Operator.applyAsDouble(i));

		return new RandomVariable(newTime, result, newSize);
	}

	@Override
	public RandomVariableInterface apply(DoubleTernaryOperator operator, RandomVariableInterface argument1, RandomVariableInterface argument2) {
		double newTime = Math.max(time, argument1.getFiltrationTime());
		newTime = Math.max(newTime, argument2.getFiltrationTime());

		int newSize = Math.max(Math.max(this.size(), argument1.size()), argument2.size());

		IntToDoubleFunction argument0Operator = this.getOperator();
		IntToDoubleFunction argument1Operator = argument1.getOperator();
		IntToDoubleFunction argument2Operator = argument2.getOperator();
		IntToDoubleFunction result = i -> operator.applyAsDouble(argument0Operator.applyAsDouble(i), argument1Operator.applyAsDouble(i), argument2Operator.applyAsDouble(i));

		return new RandomVariable(newTime, result, newSize);
	}

	public RandomVariableInterface cap(double cap) {
		if(isDeterministic()) {
			double newValueIfNonStochastic = Math.min(valueIfNonStochastic,cap);
			return new RandomVariableLowMemory(time, newValueIfNonStochastic);
		}
		else {
			double[] newRealizations = new double[realizations.length];
			for(int i=0; i= 0 ? valueIfTriggerNonNegative.get(0) : valueIfTriggerNegative.get(0);
			return new RandomVariableLowMemory(newTime, newValueIfNonStochastic);
		}
		else {
			int numberOfPaths = Math.max(Math.max(trigger.size(), valueIfTriggerNonNegative.size()), valueIfTriggerNegative.size());
			double[] newRealizations = new double[numberOfPaths];
			for(int i=0; i= 0.0 ? valueIfTriggerNonNegative.get(i) : valueIfTriggerNegative.get(i);
			}
			return new RandomVariableLowMemory(newTime, newRealizations);
		}
	}

	public RandomVariableInterface barrier(RandomVariableInterface trigger, RandomVariableInterface valueIfTriggerNonNegative, double valueIfTriggerNegative) {
		return this.barrier(trigger, valueIfTriggerNonNegative, new RandomVariableLowMemory(valueIfTriggerNonNegative.getFiltrationTime(), valueIfTriggerNegative));
	}

	/* (non-Javadoc)
	 * @see net.finmath.stochastic.RandomVariableInterface#invert()
	 */
	public RandomVariableInterface invert() {
		if(isDeterministic()) {
			double newValueIfNonStochastic = 1.0/valueIfNonStochastic;
			return new RandomVariableLowMemory(time, newValueIfNonStochastic);
		}
		else {
			double[] newRealizations = new double[realizations.length];
			for(int i=0; i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy