net.finmath.montecarlo.assetderivativevaluation.BlackScholesModel Maven / Gradle / Ivy
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 20.01.2004
*/
package net.finmath.montecarlo.assetderivativevaluation;
import java.util.Map;
import net.finmath.montecarlo.AbstractRandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.model.AbstractModel;
import net.finmath.stochastic.RandomVariableInterface;
/**
* This class implements a Black Scholes Model, that is, it provides the drift and volatility specification
* and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
*
* The model is
* \[
* dS = r S dt + \sigma S dW, \quad S(0) = S_{0},
* \]
* \[
* dN = r N dt, \quad N(0) = N_{0},
* \]
*
* The class provides the model of S to an {@link net.finmath.montecarlo.process.AbstractProcessInterface}
via the specification of
* \( f = exp \), \( \mu = r - \frac{1}{2} \sigma^2 \), \( \lambda_{1,1} = \sigma \), i.e.,
* of the SDE
* \[
* dX = \mu dt + \lambda_{1,1} dW, \quad X(0) = \log(S_{0}),
* \]
* with \( S = f(X) \). See {@link net.finmath.montecarlo.process.AbstractProcessInterface} for the notation.
*
* @author Christian Fries
* @see net.finmath.montecarlo.process.AbstractProcessInterface The interface for numerical schemes.
* @see net.finmath.montecarlo.model.AbstractModelInterface The interface for models provinding parameters to numerical schemes.
*/
public class BlackScholesModel extends AbstractModel {
private final RandomVariableInterface initialValue;
private final RandomVariableInterface riskFreeRate;
private final RandomVariableInterface volatility;
private final AbstractRandomVariableFactory randomVariableFactory;
/*
* The interface definition requires that we provide the initial value, the drift and the volatility in terms of random variables.
* We construct the corresponding random variables here and will return (immutable) references to them.
*/
private RandomVariableInterface[] initialState;
private RandomVariableInterface drift;
private RandomVariableInterface[] factorLoadings;
/**
* Create a Monte-Carlo simulation using given time discretization.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @param randomVariableFactory The random variable factory used to create random variables from constants.
*/
public BlackScholesModel(
RandomVariableInterface initialValue,
RandomVariableInterface riskFreeRate,
RandomVariableInterface volatility,
AbstractRandomVariableFactory randomVariableFactory) {
super();
this.initialValue = initialValue;
this.riskFreeRate = riskFreeRate;
this.volatility = volatility;
this.randomVariableFactory = randomVariableFactory;
}
/**
* Create a Monte-Carlo simulation using given time discretization.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @param randomVariableFactory The random variable factory used to create random variables from constants.
*/
public BlackScholesModel(
double initialValue,
double riskFreeRate,
double volatility,
AbstractRandomVariableFactory randomVariableFactory) {
super();
this.initialValue = randomVariableFactory.createRandomVariable(initialValue);
this.riskFreeRate = randomVariableFactory.createRandomVariable(riskFreeRate);
this.volatility = randomVariableFactory.createRandomVariable(volatility);
this.randomVariableFactory = randomVariableFactory;
}
/**
* Create a Monte-Carlo simulation using given time discretization.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @deprecated
*/
public BlackScholesModel(
double initialValue,
double riskFreeRate,
double volatility) {
this(initialValue, riskFreeRate, volatility, new RandomVariableFactory());
}
@Override
public RandomVariableInterface[] getInitialState() {
// Since the underlying process is configured to simulate log(S), the initial value and the drift are transformed accordingly.
if(initialState == null) initialState = new RandomVariableInterface[] { initialValue.log() };
return initialState;
}
@Override
public RandomVariableInterface[] getDrift(int timeIndex, RandomVariableInterface[] realizationAtTimeIndex, RandomVariableInterface[] realizationPredictor) {
// Since the underlying process is configured to simulate log(S), the initial value and the drift are transformed accordingly.
if(drift == null) drift = riskFreeRate.sub(volatility.squared().div(2));
return new RandomVariableInterface[] { drift };
}
@Override
public RandomVariableInterface[] getFactorLoading(int timeIndex, int component, RandomVariableInterface[] realizationAtTimeIndex) {
if(factorLoadings == null) factorLoadings = new RandomVariableInterface[] { volatility };
return factorLoadings;
}
@Override
public RandomVariableInterface applyStateSpaceTransform(int componentIndex, RandomVariableInterface randomVariable) {
return randomVariable.exp();
}
@Override
public RandomVariableInterface applyStateSpaceTransformInverse(int componentIndex, RandomVariableInterface randomVariable) {
return randomVariable.log();
}
@Override
public RandomVariableInterface getNumeraire(double time) {
return riskFreeRate.mult(time).exp();
}
@Override
public int getNumberOfComponents() {
return 1;
}
public RandomVariableInterface getRandomVariableForConstant(double value) {
return randomVariableFactory.createRandomVariable(value);
}
@Override
public BlackScholesModel getCloneWithModifiedData(Map dataModified) {
/*
* Determine the new model parameters from the provided parameter map.
*/
double newInitialValue = dataModified.get("initialValue") != null ? ((Number)dataModified.get("initialValue")).doubleValue() : initialValue.getAverage();
double newRiskFreeRate = dataModified.get("riskFreeRate") != null ? ((Number)dataModified.get("riskFreeRate")).doubleValue() : getRiskFreeRate().getAverage();
double newVolatility = dataModified.get("volatility") != null ? ((Number)dataModified.get("volatility")).doubleValue() : getVolatility().getAverage();
return new BlackScholesModel(newInitialValue, newRiskFreeRate, newVolatility, randomVariableFactory);
}
@Override
public String toString() {
return super.toString() + "\n" +
"BlackScholesModel:\n" +
" initial value...:" + initialValue + "\n" +
" risk free rate..:" + riskFreeRate + "\n" +
" volatiliy.......:" + volatility;
}
/**
* Return the initial value of this model.
*
* @return the initial value of this model.
*/
public RandomVariableInterface[] getInitialValue() {
return new RandomVariableInterface[] { initialValue };
}
/**
* Returns the risk free rate parameter of this model.
*
* @return Returns the riskFreeRate.
*/
public RandomVariableInterface getRiskFreeRate() {
return riskFreeRate;
}
/**
* Returns the volatility parameter of this model.
*
* @return Returns the volatility.
*/
public RandomVariableInterface getVolatility() {
return volatility;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy