net.finmath.montecarlo.assetderivativevaluation.InhomogeneousDisplacedLognomalModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 20.01.2004
*/
package net.finmath.montecarlo.assetderivativevaluation;
import java.util.Map;
import net.finmath.montecarlo.model.AbstractModel;
import net.finmath.stochastic.RandomVariableInterface;
/**
* This class implements an inhomogeneous displaced log-normal model, that is, it provides the drift and volatility specification
* and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
*
* The model is
* \[
* dS = r S dt + \sigma (d+S) dW, \quad S(0) = S_{0},
* \]
* \[
* dN = r N dt, \quad N(0) = N_{0},
* \]
*
* The class provides the model of S to an {@link net.finmath.montecarlo.process.AbstractProcessInterface}
via the specification of
* \( f = \text{identity} \), \( \mu = \frac{exp(r \Delta t_{i}) - 1}{\Delta t_{i}} S(t_{i}) \), \( \lambda_{1,1} = \sigma \frac{exp(-2 r t_{i}) - exp(-2 r t_{i+1})}{2 r \Delta t_{i}} \), i.e.,
* of the SDE
* \[
* dX = \mu dt + \lambda_{1,1} dW, \quad X(0) = \log(S_{0}),
* \]
* with \( S = X \). See {@link net.finmath.montecarlo.process.AbstractProcessInterface} for the notation.
*
* @author Christian Fries
* @see net.finmath.montecarlo.process.AbstractProcessInterface The interface for numerical schemes.
* @see net.finmath.montecarlo.model.AbstractModelInterface The interface for models provinding parameters to numerical schemes.
*/
public class InhomogeneousDisplacedLognomalModel extends AbstractModel {
private final double initialValue;
private final double riskFreeRate; // Actually the same as the drift (which is not stochastic)
private final double displacement;
private final double volatility;
private final boolean isUseMilsteinCorrection;
/*
* The interface definition requires that we provide the initial value, the drift and the volatility in terms of random variables.
* We construct the corresponding random variables here and will return (immutable) references to them.
*/
private RandomVariableInterface[] initialValueVector = new RandomVariableInterface[1];
/**
* Create a blended normal/lognormal model.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param displacement The displacement parameter d.
* @param volatility The volatility.
* @param isUseMilsteinCorrection If true, the drift will include the Milstein correction (making an Euler scheme a Milstein scheme).
*/
public InhomogeneousDisplacedLognomalModel(
double initialValue,
double riskFreeRate,
double displacement,
double volatility,
boolean isUseMilsteinCorrection) {
super();
this.initialValue = initialValue;
this.riskFreeRate = riskFreeRate;
this.displacement = displacement;
this.volatility = volatility;
this.isUseMilsteinCorrection = isUseMilsteinCorrection;
}
/**
* Create a blended normal/lognormal model.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param displacement The displacement parameter d.
* @param volatility The volatility.
*/
public InhomogeneousDisplacedLognomalModel(
double initialValue,
double riskFreeRate,
double displacement,
double volatility) {
this(initialValue, riskFreeRate, displacement, volatility, false);
}
@Override
public RandomVariableInterface[] getInitialState() {
if(initialValueVector[0] == null) initialValueVector[0] = getRandomVariableForConstant(initialValue);
return initialValueVector;
}
@Override
public RandomVariableInterface[] getDrift(int timeIndex, RandomVariableInterface[] realizationAtTimeIndex, RandomVariableInterface[] realizationPredictor) {
double dt = getProcess().getTimeDiscretization().getTimeStep(timeIndex);
RandomVariableInterface[] drift = new RandomVariableInterface[realizationAtTimeIndex.length];
for(int componentIndex = 0; componentIndex dataModified) {
/*
* Determine the new model parameters from the provided parameter map.
*/
double newInitialValue = dataModified.get("initialValue") != null ? ((Number)dataModified.get("initialValue")).doubleValue() : initialValue;
double newRiskFreeRate = dataModified.get("riskFreeRate") != null ? ((Number)dataModified.get("riskFreeRate")).doubleValue() : this.getRiskFreeRate();
double newDisplacement = dataModified.get("displacement") != null ? ((Number)dataModified.get("displacement")).doubleValue() : this.getVolatility();
double newVolatility = dataModified.get("volatility") != null ? ((Number)dataModified.get("volatility")).doubleValue() : this.getVolatility();
return new InhomogeneousDisplacedLognomalModel(newInitialValue, newRiskFreeRate, newDisplacement, newVolatility, isUseMilsteinCorrection);
}
@Override
public String toString() {
return super.toString() + "\n" +
"BachelierModel:\n" +
" initial value...:" + initialValue + "\n" +
" risk free rate..:" + riskFreeRate + "\n" +
" volatiliy.......:" + volatility;
}
/**
* Returns the risk free rate parameter of this model.
*
* @return Returns the riskFreeRate.
*/
public double getRiskFreeRate() {
return riskFreeRate;
}
/**
* Returns the volatility parameter of this model.
*
* @return Returns the volatility.
*/
public double getVolatility() {
return volatility;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy