All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.modelplugins.DisplacedLocalVolatilityModel Maven / Gradle / Ivy

/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 26.05.2013
 */
package net.finmath.montecarlo.interestrate.modelplugins;

import net.finmath.marketdata.model.curves.ForwardCurveInterface;
import net.finmath.stochastic.RandomVariableInterface;

/**
 * Displaced model build on top of a standard covariance model.
 * 
 * The model constructed for the i-th factor loading is
 * 
* (Li(t) + d) Fi(t) *
* where d is the displacement and Li is * the realization of the i-th component of the stochastic process and * Fi is the factor loading from the given covariance model. * * The parameter of this model is a joint parameter vector, consisting * of the parameter vector of the given base covariance model and * appending the displacement parameter at the end. * * If this model is not calibrateable, its parameter vector is that of the * covariance model, i.e., only the displacement parameter will be not * part of the calibration. * * @author Christian Fries */ public class DisplacedLocalVolatilityModel extends AbstractLIBORCovarianceModelParametric { private static final long serialVersionUID = 8032949024525942210L; private AbstractLIBORCovarianceModelParametric covarianceModel; private double displacement; private ForwardCurveInterface forwardCurve; private boolean isCalibrateable = false; /** * Displaced model build on top of a standard covariance model. * * The model constructed for the i-th factor loading is *
* (Li(t) + d) Fi(t) *
* where d is the displacement and Li is * the realization of the i-th component of the stochastic process and * Fi is the factor loading from the given covariance model. * * The parameter of this model is a joint parameter vector, consisting * of the parameter vector of the given base covariance model and * appending the displacement parameter at the end. * * If this model is not calibrateable, its parameter vector is that of the * covariance model, i.e., only the displacement parameter will be not * part of the calibration. * * @param covarianceModel The given covariance model specifying the factor loadings F. * @param displacement The displacement a. * @param isCalibrateable If true, the parameter a is a free parameter. Note that the covariance model may have its own parameter calibration settings. */ public DisplacedLocalVolatilityModel(AbstractLIBORCovarianceModelParametric covarianceModel, double displacement, boolean isCalibrateable) { super(covarianceModel.getTimeDiscretization(), covarianceModel.getLiborPeriodDiscretization(), covarianceModel.getNumberOfFactors()); this.covarianceModel = covarianceModel; this.displacement = displacement; this.isCalibrateable = isCalibrateable; } @Override public Object clone() { return new DisplacedLocalVolatilityModel((AbstractLIBORCovarianceModelParametric) covarianceModel.clone(), displacement, isCalibrateable); } /** * Returns the base covariance model, i.e., the model providing the factor loading F * such that this model's i-th factor loading is *
* (a Li,0 + (1-a)Li(t)) Fi(t) *
* where a is the displacement and Li is * the realization of the i-th component of the stochastic process and * Fi is the factor loading loading from the given covariance model. * * @return The base covariance model. */ public AbstractLIBORCovarianceModelParametric getBaseCovarianceModel() { return covarianceModel; } @Override public double[] getParameter() { if(!isCalibrateable) return covarianceModel.getParameter(); double[] covarianceParameters = covarianceModel.getParameter(); if(covarianceParameters == null) return new double[] { displacement }; // Append displacement to the end of covarianceParameters double[] jointParameters = new double[covarianceParameters.length+1]; System.arraycopy(covarianceParameters, 0, jointParameters, 0, covarianceParameters.length); jointParameters[covarianceParameters.length] = displacement; return jointParameters; } @Override public AbstractLIBORCovarianceModelParametric getCloneWithModifiedParameters(double[] parameters) { DisplacedLocalVolatilityModel model = (DisplacedLocalVolatilityModel)this.clone(); if(parameters == null || parameters.length == 0) return model; if(!isCalibrateable) { model.covarianceModel = covarianceModel.getCloneWithModifiedParameters(parameters); return model; } double[] covarianceParameters = new double[parameters.length-1]; System.arraycopy(parameters, 0, covarianceParameters, 0, covarianceParameters.length); model.covarianceModel = covarianceModel.getCloneWithModifiedParameters(covarianceParameters); model.displacement = parameters[covarianceParameters.length]; return model; } @Override public RandomVariableInterface[] getFactorLoading(int timeIndex, int component, RandomVariableInterface[] realizationAtTimeIndex) { RandomVariableInterface[] factorLoading = covarianceModel.getFactorLoading(timeIndex, component, realizationAtTimeIndex); if(realizationAtTimeIndex != null && realizationAtTimeIndex[component] != null) { RandomVariableInterface localVolatilityFactor = realizationAtTimeIndex[component].add(displacement); for (int factorIndex = 0; factorIndex < factorLoading.length; factorIndex++) { factorLoading[factorIndex] = factorLoading[factorIndex].mult(localVolatilityFactor); } } return factorLoading; } @Override public RandomVariableInterface getFactorLoadingPseudoInverse(int timeIndex, int component, int factor, RandomVariableInterface[] realizationAtTimeIndex) { throw new UnsupportedOperationException(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy