net.finmath.montecarlo.interestrate.modelplugins.LIBORVolatilityModelTimeHomogenousPiecewiseConstant Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 08.08.2005
*/
package net.finmath.montecarlo.interestrate.modelplugins;
import net.finmath.montecarlo.RandomVariable;
import net.finmath.stochastic.RandomVariableInterface;
import net.finmath.time.TimeDiscretizationInterface;
/**
* Implements a piecewise constant volatility model, where
* \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
* \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
*
* @author Christian Fries
*/
public class LIBORVolatilityModelTimeHomogenousPiecewiseConstant extends LIBORVolatilityModel {
private static final long serialVersionUID = -1942151065049237807L;
private final TimeDiscretizationInterface timeToMaturityDiscretization;
private double[] volatility;
/**
* Create a piecewise constant volatility model, where
* \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
* \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param timeToMaturityDiscretization The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
* @param volatility The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
*/
public LIBORVolatilityModelTimeHomogenousPiecewiseConstant(TimeDiscretizationInterface timeDiscretization, TimeDiscretizationInterface liborPeriodDiscretization, TimeDiscretizationInterface timeToMaturityDiscretization, double[] volatility) {
super(timeDiscretization, liborPeriodDiscretization);
if(timeToMaturityDiscretization.getTime(0) != 0) throw new IllegalArgumentException("timeToMaturityDiscretization should start with 0 as first time point.");
if(timeToMaturityDiscretization.getNumberOfTimes() != volatility.length) throw new IllegalArgumentException("volatility.length should equal timeToMaturityDiscretization.getNumberOfTimes() .");
this.timeToMaturityDiscretization = timeToMaturityDiscretization;
this.volatility = volatility;
}
@Override
public double[] getParameter() {
return volatility;
}
@Override
public void setParameter(double[] parameter) {
this.volatility = parameter;
}
@Override
public RandomVariableInterface getVolatility(int timeIndex, int liborIndex) {
// Create a very simple volatility model here
double time = getTimeDiscretization().getTime(timeIndex);
double maturity = getLiborPeriodDiscretization().getTime(liborIndex);
double timeToMaturity = maturity-time;
double volatilityInstanteaneous;
if(timeToMaturity <= 0)
{
volatilityInstanteaneous = 0.0; // This forward rate is already fixed, no volatility
}
else
{
int timeIndexTimeToMaturity = timeToMaturityDiscretization.getTimeIndex(timeToMaturity);
if(timeIndexTimeToMaturity < 0) timeIndexTimeToMaturity = -timeIndexTimeToMaturity-1-1;
if(timeIndexTimeToMaturity < 0) timeIndexTimeToMaturity = 0;
if(timeIndexTimeToMaturity >= timeToMaturityDiscretization.getNumberOfTimes()) timeIndexTimeToMaturity--;
volatilityInstanteaneous = volatility[timeIndexTimeToMaturity];
}
if(volatilityInstanteaneous < 0.0) volatilityInstanteaneous = Math.max(volatilityInstanteaneous,0.0);
return new RandomVariable(getTimeDiscretization().getTime(timeIndex),volatilityInstanteaneous);
}
@Override
public Object clone() {
return new LIBORVolatilityModelTimeHomogenousPiecewiseConstant(
super.getTimeDiscretization(),
super.getLiborPeriodDiscretization(),
this.timeToMaturityDiscretization,
this.volatility.clone()
);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy