net.finmath.optimizer.GoldenSectionSearch Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 25.01.2004
*/
package net.finmath.optimizer;
/**
* This class implements a Golden Section search algorithm, i.e., a minimization,
* implemented as a question-and-answer search algorithm.
*
* Example:
*
*
* GoldenSectionSearch search = new GoldenSectionSearch(-1.0, 5.0);
* while(search.getAccuracy() > 1E-11 && !search.isDone()) {
* double x = search.getNextPoint();
*
* double y = (x - 0.656) * (x - 0.656);
*
* search.setValue(y);
* }
*
*
*
* For an example on how to use this class see also its main method.
*
* @author Christian Fries - http://www.christian-fries.de
* @version 1.1
*/
public class GoldenSectionSearch {
// This is the golden section ration
static final double goldenSectionRatio = (3.0 - Math.sqrt(5.0)) / 2.0;
// We store the left and right end point of the interval and a middle point (placed at golden section ratio) together with their values
private final double[] points = new double[3]; // left, middle, right
private final double[] values = new double[3]; // left, middle, right
/*
* State of solver
*/
private double nextPoint; // Stores the next point to return by getPoint()
private boolean expectingValue = false; // Stores the state (true, if next call should be setValue(), false for getPoint())
private int numberOfIterations = 0; // Number of numberOfIterations
private double accuracy; // Current accuracy of solution
private boolean isDone = false; // Will be true if machine accuracy has been reached
public static void main(String[] args) {
System.out.println("Test of GoldenSectionSearch Class.\n");
// Test 1
System.out.println("1. Find minimum of f(x) = (x - 0.656) * (x - 0.656):");
GoldenSectionSearch search = new GoldenSectionSearch(-1.0, 5.0);
while(search.getAccuracy() > 1E-11 && !search.isDone()) {
double x = search.getNextPoint();
double y = (x - 0.656) * (x - 0.656);
search.setValue(y);
}
System.out.println("Result....: " + search.getBestPoint());
System.out.println("Solution..: 0.656");
System.out.println("Iterations: " + search.getNumberOfIterations() + "\n");
// Test 2
System.out.println("2. Find minimum of f(x) = cos(x) on [0.0,6.0]:");
GoldenSectionSearch search2 = new GoldenSectionSearch(0.0, 6.0);
while(search2.getAccuracy() > 1E-11 && !search2.isDone()) {
double x = search2.getNextPoint();
double y = Math.cos(x);
search2.setValue(y);
}
System.out.println("Result....: " + search2.getBestPoint());
System.out.println("Solution..: " + Math.PI + " (Pi)");
System.out.println("Iterations: " + search2.getNumberOfIterations() + "\n");
}
/**
* @param leftPoint left point of search interval
* @param rightPoint right point of search interval
*/
public GoldenSectionSearch(double leftPoint, double rightPoint) {
super();
points[0] = leftPoint;
points[1] = getGoldenSection(leftPoint, rightPoint);
points[2] = rightPoint;
nextPoint = points[0];
accuracy = points[2]-points[0];
}
/**
* @return Returns the best point obtained so far.
*/
public double getBestPoint() {
// Lazy: we always return the middle point as best point
return points[1];
}
/**
* Returns the next point for which a valuation is requested.
*
* @return Returns the next point for which a value should be set using setValue
.
*/
public double getNextPoint() {
expectingValue = true;
return nextPoint;
}
/**
* Set the value corresponding to the point returned by a previous call of getNextPoint()
.
* If setValue is called without prior call to getNextPoint(),
* e.g., when called twice, a RuntimeException is thrown.
*
* @param value Value corresponding to point returned by previous getNextPoint()
call.
*/
public void setValue(double value) {
if(!expectingValue) throw new RuntimeException("Call to setValue() perfomed without prior getNextPoint() call (e.g. call performed twice).");
if (numberOfIterations < 3) {
/**
* Initially fill values
*/
values[numberOfIterations] = value;
if (numberOfIterations < 2) {
nextPoint = points[numberOfIterations + 1];
} else {
if (points[1] - points[0] > points[2] - points[1])
nextPoint = getGoldenSection(points[0], points[1]);
else
nextPoint = getGoldenSection(points[1], points[2]);
}
}
else {
/**
* Golden section search update rule
*/
if (points[1] - points[0] > points[2] - points[1]) {
// The left interval is the large one
if (value < values[1]) {
/*
* Throw away right point
*/
points[2] = points[1];
values[2] = values[1];
points[1] = nextPoint;
values[1] = value;
} else {
/*
* Throw away left point
*/
points[0] = nextPoint;
values[0] = value;
}
} else {
// The right interval is the large one
if (value < values[1]) {
/*
* Throw away left point
*/
points[0] = points[1];
values[0] = values[1];
points[1] = nextPoint;
values[1] = value;
} else {
/*
* Throw away right point
*/
points[2] = nextPoint;
values[2] = value;
}
}
/*
* Update next point to ask value for (create point in larger interval)
*/
if (points[1] - points[0] > points[2] - points[1])
nextPoint = getGoldenSection(points[0], points[1]);
else
nextPoint = getGoldenSection(points[1], points[2]);
/*
* Save belt: check if still improve or if we have reached machine accuracy
*/
if(points[2]-points[0] >= accuracy) isDone = true;
accuracy = points[2]-points[0];
}
numberOfIterations++;
expectingValue = false;
}
public void optimize() {
while(!isDone()) {
double parameter = getNextPoint();
double value = value(parameter);
this.setValue(value);
}
}
public double value(double parameter) {
// You need to overwrite this mehtod with you own objective function
throw new RuntimeException("Objective function not overwritten.");
}
/**
* @return Returns the golden section of an interval.
*/
static double getGoldenSection(double left, double right) {
return goldenSectionRatio * left + (1.0 - goldenSectionRatio) * right;
}
/**
* @return Returns the number of iterations needed so far.
*/
public int getNumberOfIterations() {
return numberOfIterations;
}
/**
* @return Returns the accuracy obtained so far.
*/
public double getAccuracy() {
return accuracy;
}
/**
* @return Returns true if the solver is unable to improve further. This may be either due to reached accuracy or due to no solution existing.
*/
public boolean isDone() {
return isDone;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy