net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModelTimeHomogenousPiecewiseConstant Maven / Gradle / Ivy
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 08.08.2005
*/
package net.finmath.montecarlo.interestrate.models.covariance;
import java.util.Map;
import net.finmath.montecarlo.AbstractRandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;
import net.finmath.time.TimeDiscretization;
/**
* Implements a piecewise constant volatility model, where
* \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
* \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
*
* @author Christian Fries
* @version 1.0
*/
public class LIBORVolatilityModelTimeHomogenousPiecewiseConstant extends LIBORVolatilityModel {
private static final long serialVersionUID = -1942151065049237807L;
private final AbstractRandomVariableFactory randomVariableFactory;
private final TimeDiscretization timeToMaturityDiscretization;
private RandomVariable[] volatility;
/**
* Create a piecewise constant volatility model, where
* \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
* \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
*
* @param randomVariableFactory The random variable factor used to construct random variables from the parameters.
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param timeToMaturityDiscretization The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
* @param volatility The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
*/
public LIBORVolatilityModelTimeHomogenousPiecewiseConstant(AbstractRandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, RandomVariable[] volatility) {
super(timeDiscretization, liborPeriodDiscretization);
if(timeToMaturityDiscretization.getTime(0) != 0) {
throw new IllegalArgumentException("timeToMaturityDiscretization should start with 0 as first time point.");
}
if(timeToMaturityDiscretization.getNumberOfTimes() != volatility.length) {
throw new IllegalArgumentException("volatility.length should equal timeToMaturityDiscretization.getNumberOfTimes() .");
}
this.randomVariableFactory = randomVariableFactory;
this.timeToMaturityDiscretization = timeToMaturityDiscretization;
this.volatility = volatility;
}
/**
* Create a piecewise constant volatility model, where
* \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
* \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param timeToMaturityDiscretization The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
* @param volatility The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
*/
public LIBORVolatilityModelTimeHomogenousPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, RandomVariable[] volatility) {
this(null, timeDiscretization, liborPeriodDiscretization, timeToMaturityDiscretization, volatility);
}
/**
* Create a piecewise constant volatility model, where
* \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
* \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
*
* @param randomVariableFactory The random variable factor used to construct random variables from the parameters.
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param timeToMaturityDiscretization The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
* @param volatility The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
*/
public LIBORVolatilityModelTimeHomogenousPiecewiseConstant(AbstractRandomVariableFactory randomVariableFactory, TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility) {
super(timeDiscretization, liborPeriodDiscretization);
if(timeToMaturityDiscretization.getTime(0) != 0) {
throw new IllegalArgumentException("timeToMaturityDiscretization should start with 0 as first time point.");
}
if(timeToMaturityDiscretization.getNumberOfTimes() != volatility.length) {
throw new IllegalArgumentException("volatility.length should equal timeToMaturityDiscretization.getNumberOfTimes() .");
}
this.randomVariableFactory = randomVariableFactory;
this.timeToMaturityDiscretization = timeToMaturityDiscretization;
this.volatility = randomVariableFactory.createRandomVariableArray(volatility);
}
/**
* Create a piecewise constant volatility model, where
* \( \sigma(t,T) = sigma_{i} \) where \( i = \max \{ j : \tau_{j} \leq T-t \} \) and
* \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) is a given time discretization.
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param timeToMaturityDiscretization The discretization \( \tau_{0}, \tau_{1}, \ldots, \tau_{n-1} \) of the piecewise constant volatility function.
* @param volatility The values \( \sigma_{0}, \sigma_{1}, \ldots, \sigma_{n-1} \) of the piecewise constant volatility function.
*/
public LIBORVolatilityModelTimeHomogenousPiecewiseConstant(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, TimeDiscretization timeToMaturityDiscretization, double[] volatility) {
this(new RandomVariableFactory(), timeDiscretization, liborPeriodDiscretization, timeToMaturityDiscretization, volatility);
}
@Override
public RandomVariable[] getParameter() {
return volatility;
}
@Override
public LIBORVolatilityModelTimeHomogenousPiecewiseConstant getCloneWithModifiedParameter(RandomVariable[] parameter) {
return new LIBORVolatilityModelTimeHomogenousPiecewiseConstant(
randomVariableFactory,
super.getTimeDiscretization(),
super.getLiborPeriodDiscretization(),
timeToMaturityDiscretization,
parameter
);
}
@Override
public RandomVariable getVolatility(int timeIndex, int liborIndex) {
// Create a very simple volatility model here
double time = getTimeDiscretization().getTime(timeIndex);
double maturity = getLiborPeriodDiscretization().getTime(liborIndex);
double timeToMaturity = maturity-time;
RandomVariable volatilityInstanteaneous;
if(timeToMaturity <= 0)
{
volatilityInstanteaneous = new Scalar(0.0); // This forward rate is already fixed, no volatility
}
else
{
int timeIndexTimeToMaturity = timeToMaturityDiscretization.getTimeIndex(timeToMaturity);
if(timeIndexTimeToMaturity < 0) {
timeIndexTimeToMaturity = -timeIndexTimeToMaturity-1-1;
}
if(timeIndexTimeToMaturity < 0) {
timeIndexTimeToMaturity = 0;
}
if(timeIndexTimeToMaturity >= timeToMaturityDiscretization.getNumberOfTimes()) {
timeIndexTimeToMaturity--;
}
volatilityInstanteaneous = volatility[timeIndexTimeToMaturity];
}
return volatilityInstanteaneous;
}
@Override
public Object clone() {
return new LIBORVolatilityModelTimeHomogenousPiecewiseConstant(
super.getTimeDiscretization(),
super.getLiborPeriodDiscretization(),
timeToMaturityDiscretization,
volatility.clone()
);
}
@Override
public LIBORVolatilityModel getCloneWithModifiedData(Map dataModified) {
// TODO Auto-generated method stub
return null;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy