net.finmath.finitedifference.solvers.FDMThetaMethod Maven / Gradle / Ivy
package net.finmath.finitedifference.solvers;
import java.util.Arrays;
import java.util.function.DoubleUnaryOperator;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import net.finmath.finitedifference.models.FDMBlackScholesModel;
import net.finmath.finitedifference.models.FiniteDifference1DBoundary;
import net.finmath.finitedifference.models.FiniteDifference1DModel;
/**
* One dimensional finite difference solver.
*
* This is where the real stuff happens.
*
* @author Ralph Rudd
* @author Christian Fries
* @author Jörg Kienitz
* @version 1.0
*/
public class FDMThetaMethod {
private FiniteDifference1DModel model;
private FiniteDifference1DBoundary boundaryCondition;
private double alpha;
private double beta;
private double gamma;
private double theta;
private double center;
private double timeHorizon;
public FDMThetaMethod(FDMBlackScholesModel model, FiniteDifference1DBoundary boundaryCondition, double timeHorizon, double center, double theta) {
this.model = model;
this.boundaryCondition = boundaryCondition;
this.timeHorizon = timeHorizon;
this.center = center;
this.theta = theta;
this.gamma = (2 * model.getRiskFreeRate()) / Math.pow(model.getVolatility(), 2);
this.alpha = -0.5 * (gamma - 1);
this.beta = -0.25 * Math.pow((gamma + 1), 2);
}
public double[][] getValue(double evaluationTime, double time, DoubleUnaryOperator valueAtMaturity) {
if(evaluationTime != 0) {
throw new IllegalArgumentException("Evaluation time != 0 not supported.");
}
if(time != timeHorizon) {
throw new IllegalArgumentException("Given time != timeHorizonn not supported.");
}
// Grid Generation
double maximumStockPriceOnGrid = model.getForwardValue(timeHorizon)
+ model.getNumStandardDeviations() * Math.sqrt(model.varianceOfStockPrice(timeHorizon));
double minimumStockPriceOnGrid = Math.max(model.getForwardValue(timeHorizon)
- model.getNumStandardDeviations() * Math.sqrt(model.varianceOfStockPrice(timeHorizon)), 0);
double maximumX = f_x(maximumStockPriceOnGrid);
double minimumX = f_x(Math.max(minimumStockPriceOnGrid, center/50.0)); // Previously there was a floor at 1 here. The floor at 1 is problematic. It does not scale with the spot! @TODO: There should be a more intelligent method to set the floor (do we need this?)
double dx = (maximumX - minimumX) / (model.getNumSpacesteps() - 2);
int N_pos = (int) Math.ceil((maximumX / dx) + 1);
int N_neg = (int) Math.floor((minimumX / dx) - 1);
// Create interior spatial vector for heat equation
int len = N_pos - N_neg - 1;
double[] x = new double[len];
for (int i = 0; i < len; i++) {
x[i] = (N_neg + 1) * dx + dx * i;
}
// Create time vector for heat equation
double dtau = Math.pow(model.getVolatility(), 2) * timeHorizon / (2 * model.getNumSpacesteps());
double[] tau = new double[model.getNumSpacesteps() + 1];
for (int i = 0; i < model.getNumSpacesteps() + 1; i++) {
tau[i] = i * dtau;
}
// Create necessary matrices
double kappa = dtau / Math.pow(dx, 2);
double[][] C = new double[len][len];
double[][] D = new double[len][len];
for (int i = 0; i < len; i++) {
for (int j = 0; j < len; j++) {
if (i == j) {
C[i][j] = 1 + 2 * theta * kappa;
D[i][j] = 1 - 2 * (1 - theta) * kappa;
} else if ((i == j - 1) || (i == j + 1)) {
C[i][j] = - theta * kappa;
D[i][j] = (1 - theta) * kappa;
} else {
C[i][j] = 0;
D[i][j] = 0;
}
}
}
RealMatrix CMatrix = new Array2DRowRealMatrix(C);
RealMatrix DMatrix = new Array2DRowRealMatrix(D);
DecompositionSolver solver = new LUDecomposition(CMatrix).getSolver();
// Create spatial boundary vector
double[] b = new double[len];
Arrays.fill(b, 0);
// Initialize U
double[] U = new double[len];
for (int i = 0; i < U.length; i++) {
double state = x[i];
U[i] = f(valueAtMaturity.applyAsDouble(f_s(state)), state, 0);
}
RealMatrix UVector = MatrixUtils.createColumnRealMatrix(U);
// Solve system
for (int m = 0; m < model.getNumSpacesteps(); m++) {
b[0] = (u_neg_inf(N_neg * dx, tau[m]) * (1 - theta) * kappa)
+ (u_neg_inf(N_neg * dx, tau[m + 1]) * theta * kappa);
b[len-1] = (u_pos_inf(N_pos * dx, tau[m]) * (1 - theta) * kappa)
+ (u_pos_inf(N_pos * dx, tau[m + 1]) * theta * kappa);
RealMatrix bVector = MatrixUtils.createColumnRealMatrix(b);
RealMatrix constantsMatrix = (DMatrix.multiply(UVector)).add(bVector);
UVector = solver.solve(constantsMatrix);
}
U = UVector.getColumn(0);
// Transform x to stockPrice and U to optionPrice
double[] optionPrice = new double[len];
double[] stockPrice = new double[len];
for (int i = 0; i < len; i++ ){
optionPrice[i] = U[i] * center *
Math.exp(alpha * x[i] + beta * tau[model.getNumSpacesteps()]);
stockPrice[i] = f_s(x[i]);
}
double[][] stockAndOptionPrice = new double[2][len];
stockAndOptionPrice[0] = stockPrice;
stockAndOptionPrice[1] = optionPrice;
return stockAndOptionPrice;
}
// State Space Transformations
private double f_x(double value) {return Math.log(value / center); }
private double f_s(double x) { return center * Math.exp(x); }
private double f_t(double tau) { return timeHorizon - (2 * tau) / Math.pow(model.getVolatility(), 2); }
private double f(double value, double x, double tau) { return (value / center) * Math.exp(-alpha * x - beta * tau); }
// Heat Equation Boundary Conditions
private double u_neg_inf(double x, double tau) {
return f(boundaryCondition.getValueAtLowerBoundary(model, f_t(tau), f_s(x)), x, tau);
}
private double u_pos_inf(double x, double tau) {
return f(boundaryCondition.getValueAtUpperBoundary(model, f_t(tau), f_s(x)), x, tau);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy