All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.marketdata2.calibration.Solver Maven / Gradle / Ivy

/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 26.11.2012
 */
package net.finmath.marketdata2.calibration;

import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Vector;

import net.finmath.marketdata2.model.AnalyticModel;
import net.finmath.marketdata2.products.AnalyticProduct;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.optimizer.SolverException;
import net.finmath.optimizer.StochasticOptimizer;
import net.finmath.optimizer.StochasticOptimizerFactory;
import net.finmath.optimizer.StochasticPathwiseOptimizerFactoryLevenbergMarquardt;
import net.finmath.stochastic.RandomVariable;

/**
 * Generates a calibrated model for a given set
 * of calibrationProducts with respect to given CurveFromInterpolationPointss.
 *
 * The model and the curve are assumed to be immutable, i.e., the solver
 * will return a calibrate clone, containing clones for every curve
 * which is part of the set of curves to be calibrated.
 *
 * The calibration is performed as a multi-threaded global optimization.
 * I will greatly profit from a multi-core architecture.
 *
 * @author Christian Fries
 * @version 1.0
 */
public class Solver {

	private final AnalyticModel			model;
	private final List	calibrationProducts;
	private final List						calibrationTargetValues;
	private final double							calibrationAccuracy;
	private final ParameterTransformation			parameterTransformation;

	private StochasticOptimizerFactory		optimizerFactory;

	private	final	double	evaluationTime;
	private final	int		maxIterations	= 1000;

	private 		int		iterations		= 0;
	private 		double	accuracy		= Double.POSITIVE_INFINITY;

	/**
	 * Generate a solver for the given parameter objects (independents) and
	 * objective functions (dependents).
	 *
	 * @param model The model from which a calibrated clone should be created.
	 * @param calibrationProducts The objective functions.
	 * @param calibrationTargetValues Array of target values for the objective functions.
	 * @param parameterTransformation A parameter transformation, if any, otherwise null.
	 * @param evaluationTime Evaluation time applied to the calibration products.
	 * @param optimizerFactory A factory providing the optimizer (for the given objective function)
	 */
	public Solver(AnalyticModel model, Vector calibrationProducts, List calibrationTargetValues, ParameterTransformation parameterTransformation, double evaluationTime, StochasticOptimizerFactory optimizerFactory) {
		super();
		this.model = model;
		this.calibrationProducts = calibrationProducts;
		this.calibrationTargetValues = calibrationTargetValues;
		this.parameterTransformation = parameterTransformation;
		this.evaluationTime = evaluationTime;
		this.optimizerFactory = optimizerFactory;
		this.calibrationAccuracy = 0.0;
	}

	/**
	 * Generate a solver for the given parameter objects (independents) and
	 * objective functions (dependents).
	 *
	 * @param model The model from which a calibrated clone should be created.
	 * @param calibrationProducts The objective functions.
	 * @param calibrationTargetValues Array of target values for the objective functions.
	 * @param parameterTransformation A parameter transformation, if any, otherwise null.
	 * @param evaluationTime Evaluation time applied to the calibration products.
	 * @param calibrationAccuracy The error tolerance of the solver.
	 */
	public Solver(AnalyticModel model, Vector calibrationProducts, List calibrationTargetValues, ParameterTransformation parameterTransformation, double evaluationTime, double calibrationAccuracy) {
		super();
		this.model = model;
		this.calibrationProducts = calibrationProducts;
		this.calibrationTargetValues = calibrationTargetValues;
		this.parameterTransformation = parameterTransformation;
		this.evaluationTime = evaluationTime;
		this.calibrationAccuracy = calibrationAccuracy;
		this.optimizerFactory = null;
	}

	/**
	 * Generate a solver for the given parameter objects (independents) and
	 * objective functions (dependents).
	 *
	 * @param model The model from which a calibrated clone should be created.
	 * @param calibrationProducts The objective functions.
	 * @param calibrationTargetValues Array of target values for the objective functions.
	 * @param evaluationTime Evaluation time applied to the calibration products.
	 * @param calibrationAccuracy The error tolerance of the solver.
	 */
	public Solver(AnalyticModel model, Vector calibrationProducts, List calibrationTargetValues, double evaluationTime, double calibrationAccuracy) {
		this(model, calibrationProducts, calibrationTargetValues, null, evaluationTime, calibrationAccuracy);
	}

	/**
	 * Generate a solver for the given parameter objects (independents) and
	 * objective functions (dependents).
	 *
	 * @param model The model from which a calibrated clone should be created.
	 * @param calibrationProducts The objective functions.
	 * @param evaluationTime Evaluation time applied to the calibration products.
	 * @param calibrationAccuracy The error tolerance of the solver.
	 */
	public Solver(AnalyticModel model, Vector calibrationProducts, double evaluationTime, double calibrationAccuracy) {
		this(model, calibrationProducts, null, null, evaluationTime, calibrationAccuracy);
	}

	/**
	 * Generate a solver for the given parameter objects (independents) and
	 * objective functions (dependents).
	 *
	 * @param model The model from which a calibrated clone should be created.
	 * @param calibrationProducts The objective functions.
	 */
	public Solver(AnalyticModel model, Vector calibrationProducts) {
		this(model, calibrationProducts, 0.0, 0.0);
	}

	/**
	 * Find the model such that the equation
	 * 
* * objectiveFunctions.getValue(model) = 0 * *
* holds. * * @param objectsToCalibrate The set of parameterized objects to calibrate. * @return A reference to a calibrated clone of the given model. * @throws net.finmath.optimizer.SolverException Thrown if the underlying optimizer does not find a solution. */ public AnalyticModel getCalibratedModel(Set objectsToCalibrate) throws SolverException { final ParameterAggregation parameterAggregate = new ParameterAggregation<>(objectsToCalibrate); // Set solver parameters final RandomVariable[] initialParameters; // Apply parameter transformation to solver parameter space if(parameterTransformation != null) { initialParameters = parameterTransformation.getSolverParameter(parameterAggregate.getParameter()); } else { initialParameters = parameterAggregate.getParameter(); } final RandomVariable[] zeros = new RandomVariable[calibrationProducts.size()]; final RandomVariable[] ones = new RandomVariable[calibrationProducts.size()]; final RandomVariable[] lowerBound = new RandomVariable[initialParameters.length]; final RandomVariable[] upperBound = new RandomVariable[initialParameters.length]; java.util.Arrays.fill(zeros, new RandomVariableFromDoubleArray(0.0)); java.util.Arrays.fill(ones, new RandomVariableFromDoubleArray(1.0)); java.util.Arrays.fill(lowerBound, new RandomVariableFromDoubleArray(Double.NEGATIVE_INFINITY)); java.util.Arrays.fill(upperBound, new RandomVariableFromDoubleArray(Double.POSITIVE_INFINITY)); StochasticOptimizer.ObjectiveFunction objectiveFunction = new StochasticOptimizer.ObjectiveFunction() { @Override public void setValues(RandomVariable[] parameters, RandomVariable[] values) throws SolverException { RandomVariable[] modelParameters = parameters; try { if(parameterTransformation != null) { modelParameters = parameterTransformation.getParameter(parameters); // Copy back the parameter constrain to inform the optimizer System.arraycopy(parameterTransformation.getSolverParameter(modelParameters), 0, parameters, 0, parameters.length); } Map curvesParameterPairs = parameterAggregate.getObjectsToModifyForParameter(modelParameters); AnalyticModel modelClone = model.getCloneForParameter(curvesParameterPairs); for(int i=0; i curvesParameterPairs = parameterAggregate.getObjectsToModifyForParameter(bestParameters); calibratedModel = model.getCloneForParameter(curvesParameterPairs); } catch (CloneNotSupportedException e) { throw new SolverException(e); } accuracy = 0.0; for(int i=0; i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy