net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModelFourParameterExponentialFormIntegrated Maven / Gradle / Ivy
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 08.08.2005
*/
package net.finmath.montecarlo.interestrate.models.covariance;
import net.finmath.marketdata.model.volatilities.CapletVolatilitiesParametric;
import net.finmath.marketdata.model.volatilities.VolatilitySurface.QuotingConvention;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;
import net.finmath.time.TimeDiscretization;
/**
* Implements the volatility model
* \[
* \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.}
* \]
*
* The parameters here have some interpretation:
*
* - The parameter a: an initial volatility level.
* - The parameter b: the slope at the short end (shortly before maturity).
* - The parameter c: exponential decay of the volatility in time-to-maturity.
* - The parameter d: if c > 0 this is the very long term volatility level.
*
*
* Note that this model results in a terminal (Black 76) volatility which is given
* by
* \[
* \left( \sigma^{\text{Black}}_{i}(t_{k}) \right)^2 = \frac{1}{t_{k} \int_{0}^{t_{k}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t \text{.}
* \]
*
* @author Christian Fries
* @version 1.0
*/
public class LIBORVolatilityModelFourParameterExponentialFormIntegrated extends LIBORVolatilityModel {
private static final long serialVersionUID = -1613728266481870311L;
private RandomVariable a;
private RandomVariable b;
private RandomVariable c;
private RandomVariable d;
private boolean isCalibrateable = false;
private transient CapletVolatilitiesParametric cap;
/**
* Creates the volatility model
* \[
* \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.}
* \]
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param a The parameter a: an initial volatility level.
* @param b The parameter b: the slope at the short end (shortly before maturity).
* @param c The parameter c: exponential decay of the volatility in time-to-maturity.
* @param d The parameter d: if c > 0 this is the very long term volatility level.
* @param isCalibrateable Set this to true, if the parameters are available for calibration.
*/
public LIBORVolatilityModelFourParameterExponentialFormIntegrated(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable a, RandomVariable b, RandomVariable c, RandomVariable d, boolean isCalibrateable) {
super(timeDiscretization, liborPeriodDiscretization);
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.isCalibrateable = isCalibrateable;
cap = new CapletVolatilitiesParametric("", null, a.doubleValue(), b.doubleValue(), c.doubleValue(), d.doubleValue());
}
/**
* Creates the volatility model
* \[
* \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.}
* \]
*
* @param timeDiscretization The simulation time discretization tj.
* @param liborPeriodDiscretization The period time discretization Ti.
* @param a The parameter a: an initial volatility level.
* @param b The parameter b: the slope at the short end (shortly before maturity).
* @param c The parameter c: exponential decay of the volatility in time-to-maturity.
* @param d The parameter d: if c > 0 this is the very long term volatility level.
* @param isCalibrateable Set this to true, if the parameters are available for calibration.
*/
public LIBORVolatilityModelFourParameterExponentialFormIntegrated(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable) {
super(timeDiscretization, liborPeriodDiscretization);
this.a = new Scalar(a);
this.b = new Scalar(b);
this.c = new Scalar(c);
this.d = new Scalar(d);
this.isCalibrateable = isCalibrateable;
cap = new CapletVolatilitiesParametric("", null, a, b, c, d);
}
@Override
public RandomVariable[] getParameter() {
if(!isCalibrateable) {
return null;
}
RandomVariable[] parameter = new RandomVariable[4];
parameter[0] = a;
parameter[1] = b;
parameter[2] = c;
parameter[3] = d;
return parameter;
}
@Override
public LIBORVolatilityModelFourParameterExponentialFormIntegrated getCloneWithModifiedParameter(RandomVariable[] parameter) {
if(!isCalibrateable) {
return this;
}
return new LIBORVolatilityModelFourParameterExponentialFormIntegrated(
super.getTimeDiscretization(),
super.getLiborPeriodDiscretization(),
parameter[0],
parameter[1],
parameter[2],
parameter[3],
isCalibrateable
);
}
@Override
public RandomVariable getVolatility(int timeIndex, int liborIndex) {
// Create a very simple volatility model here
double timeStart = getTimeDiscretization().getTime(timeIndex);
double timeEnd = getTimeDiscretization().getTime(timeIndex+1);
double maturity = getLiborPeriodDiscretization().getTime(liborIndex);
double volStart = cap.getValue(maturity-timeStart, 0, QuotingConvention.VOLATILITYLOGNORMAL);
double volEnd = cap.getValue(maturity-timeEnd, 0, QuotingConvention.VOLATILITYLOGNORMAL);
double varianceInstantaneous = (
volStart*volStart*(maturity-timeStart)
-
volEnd*volEnd*(maturity-timeEnd)
)/(timeEnd-timeStart);
varianceInstantaneous = Math.max(varianceInstantaneous, 0.0);
return new RandomVariableFromDoubleArray(Math.sqrt(varianceInstantaneous));
}
@Override
public Object clone() {
return new LIBORVolatilityModelFourParameterExponentialFormIntegrated(
super.getTimeDiscretization(),
super.getLiborPeriodDiscretization(),
a,
b,
c,
d,
isCalibrateable
);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy