All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.models.covariance.LIBORVolatilityModelFourParameterExponentialFormIntegrated Maven / Gradle / Ivy

/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 08.08.2005
 */
package net.finmath.montecarlo.interestrate.models.covariance;

import net.finmath.marketdata.model.volatilities.CapletVolatilitiesParametric;
import net.finmath.marketdata.model.volatilities.VolatilitySurface.QuotingConvention;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;
import net.finmath.time.TimeDiscretization;

/**
 * Implements the volatility model
 * \[
 * 	\sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.}
 * \]
 *
 * The parameters here have some interpretation:
 * 
    *
  • The parameter a: an initial volatility level.
  • *
  • The parameter b: the slope at the short end (shortly before maturity).
  • *
  • The parameter c: exponential decay of the volatility in time-to-maturity.
  • *
  • The parameter d: if c > 0 this is the very long term volatility level.
  • *
* * Note that this model results in a terminal (Black 76) volatility which is given * by * \[ * \left( \sigma^{\text{Black}}_{i}(t_{k}) \right)^2 = \frac{1}{t_{k} \int_{0}^{t_{k}} \left( ( a + b (T_{i}-t) ) exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t \text{.} * \] * * @author Christian Fries * @version 1.0 */ public class LIBORVolatilityModelFourParameterExponentialFormIntegrated extends LIBORVolatilityModel { private static final long serialVersionUID = -1613728266481870311L; private RandomVariable a; private RandomVariable b; private RandomVariable c; private RandomVariable d; private boolean isCalibrateable = false; private transient CapletVolatilitiesParametric cap; /** * Creates the volatility model * \[ * \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} * \] * * @param timeDiscretization The simulation time discretization tj. * @param liborPeriodDiscretization The period time discretization Ti. * @param a The parameter a: an initial volatility level. * @param b The parameter b: the slope at the short end (shortly before maturity). * @param c The parameter c: exponential decay of the volatility in time-to-maturity. * @param d The parameter d: if c > 0 this is the very long term volatility level. * @param isCalibrateable Set this to true, if the parameters are available for calibration. */ public LIBORVolatilityModelFourParameterExponentialFormIntegrated(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, RandomVariable a, RandomVariable b, RandomVariable c, RandomVariable d, boolean isCalibrateable) { super(timeDiscretization, liborPeriodDiscretization); this.a = a; this.b = b; this.c = c; this.d = d; this.isCalibrateable = isCalibrateable; cap = new CapletVolatilitiesParametric("", null, a.doubleValue(), b.doubleValue(), c.doubleValue(), d.doubleValue()); } /** * Creates the volatility model * \[ * \sigma_{i}(t_{j}) = \sqrt{ \frac{1}{t_{j+1}-t_{j}} \int_{t_{j}}^{t_{j+1}} \left( ( a + b (T_{i}-t) ) \exp(-c (T_{i}-t)) + d \right)^{2} \ \mathrm{d}t } \text{.} * \] * * @param timeDiscretization The simulation time discretization tj. * @param liborPeriodDiscretization The period time discretization Ti. * @param a The parameter a: an initial volatility level. * @param b The parameter b: the slope at the short end (shortly before maturity). * @param c The parameter c: exponential decay of the volatility in time-to-maturity. * @param d The parameter d: if c > 0 this is the very long term volatility level. * @param isCalibrateable Set this to true, if the parameters are available for calibration. */ public LIBORVolatilityModelFourParameterExponentialFormIntegrated(TimeDiscretization timeDiscretization, TimeDiscretization liborPeriodDiscretization, double a, double b, double c, double d, boolean isCalibrateable) { super(timeDiscretization, liborPeriodDiscretization); this.a = new Scalar(a); this.b = new Scalar(b); this.c = new Scalar(c); this.d = new Scalar(d); this.isCalibrateable = isCalibrateable; cap = new CapletVolatilitiesParametric("", null, a, b, c, d); } @Override public RandomVariable[] getParameter() { if(!isCalibrateable) { return null; } RandomVariable[] parameter = new RandomVariable[4]; parameter[0] = a; parameter[1] = b; parameter[2] = c; parameter[3] = d; return parameter; } @Override public LIBORVolatilityModelFourParameterExponentialFormIntegrated getCloneWithModifiedParameter(RandomVariable[] parameter) { if(!isCalibrateable) { return this; } return new LIBORVolatilityModelFourParameterExponentialFormIntegrated( super.getTimeDiscretization(), super.getLiborPeriodDiscretization(), parameter[0], parameter[1], parameter[2], parameter[3], isCalibrateable ); } @Override public RandomVariable getVolatility(int timeIndex, int liborIndex) { // Create a very simple volatility model here double timeStart = getTimeDiscretization().getTime(timeIndex); double timeEnd = getTimeDiscretization().getTime(timeIndex+1); double maturity = getLiborPeriodDiscretization().getTime(liborIndex); double volStart = cap.getValue(maturity-timeStart, 0, QuotingConvention.VOLATILITYLOGNORMAL); double volEnd = cap.getValue(maturity-timeEnd, 0, QuotingConvention.VOLATILITYLOGNORMAL); double varianceInstantaneous = ( volStart*volStart*(maturity-timeStart) - volEnd*volEnd*(maturity-timeEnd) )/(timeEnd-timeStart); varianceInstantaneous = Math.max(varianceInstantaneous, 0.0); return new RandomVariableFromDoubleArray(Math.sqrt(varianceInstantaneous)); } @Override public Object clone() { return new LIBORVolatilityModelFourParameterExponentialFormIntegrated( super.getTimeDiscretization(), super.getLiborPeriodDiscretization(), a, b, c, d, isCalibrateable ); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy