net.finmath.montecarlo.interestrate.models.covariance.TermStructureCovarianceModelParametric Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 24.12.2016
*/
package net.finmath.montecarlo.interestrate.models.covariance;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.logging.Level;
import java.util.logging.Logger;
import net.finmath.exception.CalculationException;
import net.finmath.montecarlo.BrownianMotion;
import net.finmath.montecarlo.BrownianMotionLazyInit;
import net.finmath.montecarlo.interestrate.CalibrationProduct;
import net.finmath.montecarlo.interestrate.LIBORMonteCarloSimulationFromTermStructureModel;
import net.finmath.montecarlo.interestrate.TermStructureModel;
import net.finmath.montecarlo.process.EulerSchemeFromProcessModel;
import net.finmath.optimizer.Optimizer;
import net.finmath.optimizer.Optimizer.ObjectiveFunction;
import net.finmath.optimizer.OptimizerFactory;
import net.finmath.optimizer.OptimizerFactoryLevenbergMarquardt;
import net.finmath.optimizer.SolverException;
/**
* A base class and interface description for the instantaneous covariance of
* an forward rate interest rate model.
*
* @author Christian Fries
* @version 1.0
*/
public abstract class TermStructureCovarianceModelParametric implements TermStructureCovarianceModelInterface, TermStructureTenorTimeScalingInterface, TermStructureFactorLoadingsModelParametricInterface {
private static final Logger logger = Logger.getLogger("net.finmath");
/**
* Get the parameters of determining this parametric
* covariance model. The parameters are usually free parameters
* which may be used in calibration.
*
* @return Parameter vector.
*/
@Override
public abstract double[] getParameter();
@Override
public abstract TermStructureCovarianceModelParametric clone();
/**
* Return an instance of this model using a new set of parameters.
* Note: To improve performance it is admissible to return the same instance of the object given that the parameters have not changed. Models should be immutable.
*
* @param parameters The new set of parameters.
* @return An instance of AbstractLIBORCovarianceModelParametric with modified parameters.
*/
@Override
public abstract TermStructureCovarianceModelParametric getCloneWithModifiedParameters(double[] parameters);
/**
* Return a calibrated clone of the covariance model.
*
* @param calibrationModel Model to be used for the calibration.
* @param calibrationProducts Vector of calibration products.
* @param calibrationParameters Property map of calibration parameters.
* @return A clone of this model, using the calibrated parameters.
* @throws CalculationException Exception indicating failure in calibration.
*/
public TermStructureCovarianceModelParametric getCloneCalibrated(final TermStructureModel calibrationModel, final CalibrationProduct[] calibrationProducts, Map calibrationParameters) throws CalculationException {
if(calibrationParameters == null) {
calibrationParameters = new HashMap<>();
}
Integer numberOfPathsParameter = (Integer)calibrationParameters.get("numberOfPaths");
Integer seedParameter = (Integer)calibrationParameters.get("seed");
Integer maxIterationsParameter = (Integer)calibrationParameters.get("maxIterations");
Double parameterStepParameter = (Double)calibrationParameters.get("parameterStep");
Double accuracyParameter = (Double)calibrationParameters.get("accuracy");
BrownianMotion brownianMotionParameter = (BrownianMotion)calibrationParameters.get("brownianMotion");
double[] initialParameters = this.getParameter();
double[] lowerBound = new double[initialParameters.length];
double[] upperBound = new double[initialParameters.length];
double[] parameterStep = new double[initialParameters.length];
double[] zero = new double[calibrationProducts.length];
Arrays.fill(lowerBound, 0);
Arrays.fill(upperBound, Double.POSITIVE_INFINITY);
Arrays.fill(parameterStep, parameterStepParameter != null ? parameterStepParameter.doubleValue() : 1E-4);
Arrays.fill(zero, 0);
/*
* We allow for 2 simultaneous calibration models.
* Note: In the case of a Monte-Carlo calibration, the memory requirement is that of
* one model with 2 times the number of paths. In the case of an analytic calibration
* memory requirement is not the limiting factor.
*/
int numberOfThreads = 2;
OptimizerFactory optimizerFactoryParameter = (OptimizerFactory)calibrationParameters.get("optimizerFactory");
int numberOfPaths = numberOfPathsParameter != null ? numberOfPathsParameter.intValue() : 2000;
int seed = seedParameter != null ? seedParameter.intValue() : 31415;
int maxIterations = maxIterationsParameter != null ? maxIterationsParameter.intValue() : 400;
double accuracy = accuracyParameter != null ? accuracyParameter.doubleValue() : 1E-7;
final BrownianMotion brownianMotion = brownianMotionParameter != null ? brownianMotionParameter : new BrownianMotionLazyInit(calibrationModel.getProcess().getStochasticDriver().getTimeDiscretization(), getNumberOfFactors(), numberOfPaths, seed);
OptimizerFactory optimizerFactory = optimizerFactoryParameter != null ? optimizerFactoryParameter : new OptimizerFactoryLevenbergMarquardt(maxIterations, accuracy, numberOfThreads);
int numberOfThreadsForProductValuation = 2 * Math.max(2, Runtime.getRuntime().availableProcessors());
final ExecutorService executor = null;//Executors.newFixedThreadPool(numberOfThreadsForProductValuation);
ObjectiveFunction calibrationError = new ObjectiveFunction() {
// Calculate model values for given parameters
@Override
public void setValues(double[] parameters, double[] values) throws SolverException {
TermStructureCovarianceModelParametric calibrationCovarianceModel = TermStructureCovarianceModelParametric.this.getCloneWithModifiedParameters(parameters);
// Create a term structure model with the new covariance structure.
HashMap data = new HashMap<>();
data.put("covarianceModel", calibrationCovarianceModel);
TermStructureModel model;
try {
model = calibrationModel.getCloneWithModifiedData(data);
} catch (CalculationException e) {
throw new SolverException(e);
}
EulerSchemeFromProcessModel process = new EulerSchemeFromProcessModel(brownianMotion);
final LIBORMonteCarloSimulationFromTermStructureModel lIBORMonteCarloSimulationFromTermStructureModel = new LIBORMonteCarloSimulationFromTermStructureModel(model, process);
ArrayList> valueFutures = new ArrayList<>(calibrationProducts.length);
for(int calibrationProductIndex=0; calibrationProductIndex worker = new Callable() {
@Override
public Double call() {
try {
return calibrationProducts[workerCalibrationProductIndex].getProduct().getValue(0.0,lIBORMonteCarloSimulationFromTermStructureModel).sub(calibrationProducts[workerCalibrationProductIndex].getTargetValue()).mult(calibrationProducts[workerCalibrationProductIndex].getWeight()).getAverage();
} catch (CalculationException e) {
// We do not signal exceptions to keep the solver working and automatically exclude non-working calibration products.
return 0.0;
} catch (Exception e) {
// We do not signal exceptions to keep the solver working and automatically exclude non-working calibration products.
return 0.0;
}
}
};
if(executor != null) {
Future valueFuture = executor.submit(worker);
valueFutures.add(calibrationProductIndex, valueFuture);
}
else {
FutureTask valueFutureTask = new FutureTask<>(worker);
valueFutureTask.run();
valueFutures.add(calibrationProductIndex, valueFutureTask);
}
}
for(int calibrationProductIndex=0; calibrationProductIndex
© 2015 - 2025 Weber Informatics LLC | Privacy Policy