net.finmath.montecarlo.model.ProcessModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 28.03.2008
*/
package net.finmath.montecarlo.model;
import java.time.LocalDateTime;
import java.util.Map;
import net.finmath.exception.CalculationException;
import net.finmath.montecarlo.process.MonteCarloProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* The interface for a model of a stochastic process X where
* X = f(Y) and
* \[
* dY_{j} = \mu_{j} dt + \lambda_{1,j} dW_{1} + \ldots + \lambda_{m,j} dW_{m}
* \]
*
*
* - The value of Y(0) is provided by the method {@link net.finmath.montecarlo.model.ProcessModel#getInitialState}.
*
- The value of μ is provided by the method {@link net.finmath.montecarlo.model.ProcessModel#getDrift}.
*
- The value λj is provided by the method {@link net.finmath.montecarlo.model.ProcessModel#getFactorLoading}.
*
- The function f is provided by the method {@link net.finmath.montecarlo.model.ProcessModel#applyStateSpaceTransform}.
*
* Here, μ and λj may depend on X, which allows to implement stochastic drifts (like in a LIBOR market model)
* of local volatility models.
*
*
* Examples:
*
* -
* The Black Scholes model can be modeled by S = X = Y (i.e. f is the identity)
* and μ1 = r S and λ1,1 = σ S.
*
* -
* Alternatively, the Black Scholes model can be modeled by S = X = exp(Y) (i.e. f is exp)
* and μ1 = r - 0.5 σ σ and λ1,1 = σ.
*
*
*
* @author Christian Fries
* @version 1.0
*/
public interface ProcessModel {
/**
* Returns the model's date corresponding to the time discretization's \( t = 0 \).
*
* Note: Currently not all models provide a reference date. This will change in future versions.
*
* @return The model's date corresponding to the time discretization's \( t = 0 \).
*/
LocalDateTime getReferenceDate();
/**
* Returns the time discretization of the model parameters. It is not necessary that this time discretization agrees
* with the discretization of the stochactic process used in Abstract Process implementation.
*
* @return The time discretization
*/
TimeDiscretization getTimeDiscretization();
/**
* Returns the number of components
*
* @return The number of components
*/
int getNumberOfComponents();
/**
* Applies the state space transform fi to the given state random variable
* such that Yi → fi(Yi) =: Xi.
*
* @param componentIndex The component index i.
* @param randomVariable The state random variable Yi.
* @return New random variable holding the result of the state space transformation.
*/
RandomVariable applyStateSpaceTransform(int componentIndex, RandomVariable randomVariable);
default RandomVariable applyStateSpaceTransformInverse(int componentIndex, RandomVariable randomVariable) {
throw new UnsupportedOperationException("Inverse of statespace transform not set");
}
/**
* Returns the initial value of the state variable of the process Y, not to be
* confused with the initial value of the model X (which is the state space transform
* applied to this state value.
*
* @return The initial value of the state variable of the process Y(t=0).
*/
RandomVariable[] getInitialState();
/**
* Return the numeraire at a given time index.
* Note: The random variable returned is a defensive copy and may be modified.
*
* @param time The time t for which the numeraire N(t) should be returned.
* @return The numeraire at the specified time as RandomVariableFromDoubleArray
* @throws net.finmath.exception.CalculationException Thrown if the valuation fails, specific cause may be available via the cause()
method.
*/
RandomVariable getNumeraire(double time) throws CalculationException;
/**
* This method has to be implemented to return the drift, i.e.
* the coefficient vector
* μ = (μ1, ..., μn) such that X = f(Y) and
* dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
* in an m-factor model. Here j denotes index of the component of the resulting
* process.
*
* Since the model is provided only on a time discretization, the method may also (should try to) return the drift
* as \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \).
*
* @param timeIndex The time index (related to the model times discretization).
* @param realizationAtTimeIndex The given realization at timeIndex
* @param realizationPredictor The given realization at timeIndex+1
or null if no predictor is available.
* @return The drift or average drift from timeIndex to timeIndex+1, i.e. \( \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} \mu(\tau) \mathrm{d}\tau \) (or a suitable approximation).
*/
RandomVariable[] getDrift(int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor);
/**
* Returns the number of factors m, i.e., the number of independent Brownian drivers.
*
* @return The number of factors.
*/
int getNumberOfFactors();
/**
* This method has to be implemented to return the factor loadings, i.e.
* the coefficient vector
* λj = (λ1,j, ..., λm,j) such that X = f(Y) and
* dYj = μj dt + λ1,j dW1 + ... + λm,j dWm
* in an m-factor model. Here j denotes index of the component of the resulting
* process.
*
* @param timeIndex The time index (related to the model times discretization).
* @param componentIndex The index j of the driven component.
* @param realizationAtTimeIndex The realization of X at the time corresponding to timeIndex (in order to implement local and stochastic volatlity models).
* @return The factor loading for given factor and component.
*/
RandomVariable[] getFactorLoading(int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex);
/**
* Return a random variable initialized with a constant using the models random variable factory.
*
* @param value The constant value.
* @return A new random variable initialized with a constant value.
*/
default RandomVariable getRandomVariableForConstant(double value) {
return getProcess().getStochasticDriver().getRandomVariableForConstant(value);
}
/**
* Set the numerical scheme used to generate the stochastic process.
*
* The model needs the numerical scheme to calculate, e.g., the numeraire.
*
* @param process The process.
*/
void setProcess(MonteCarloProcess process);
/**
* Get the numerical scheme used to generate the stochastic process.
*
* The model needs the numerical scheme to calculate, e.g., the numeraire.
*
* @return the process
*/
MonteCarloProcess getProcess();
/**
* Returns a clone of this model where the specified properties have been modified.
*
* Note that there is no guarantee that a model reacts on a specification of a properties in the
* parameter map dataModified
. If data is provided which is ignored by the model
* no exception may be thrown.
*
* @param dataModified Key-value-map of parameters to modify.
* @return A clone of this model (or this model if no parameter was modified).
* @throws CalculationException Thrown when the model could not be created.
*/
ProcessModel getCloneWithModifiedData(Map dataModified) throws CalculationException;
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy