net.finmath.montecarlo.templatemethoddesign.assetderivativevaluation.MonteCarloBlackScholesModel2 Maven / Gradle / Ivy
/*
* Created on 20.01.2004
*/
package net.finmath.montecarlo.templatemethoddesign.assetderivativevaluation;
import java.time.LocalDateTime;
import java.util.Map;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.montecarlo.assetderivativevaluation.AssetModelMonteCarloSimulationModel;
import net.finmath.montecarlo.templatemethoddesign.LogNormalProcess;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Monte Carlo simulation of a simple Black-Scholes model for a stock generated discrete process
*
* @author Christian Fries
* @version 1.2
*/
public class MonteCarloBlackScholesModel2 extends LogNormalProcess implements AssetModelMonteCarloSimulationModel {
private double initialValue;
private double riskFreeRate; // Actually the same as the drift (which is not stochastic)
private double volatility;
private RandomVariable[] initialValueVector = new RandomVariable[1];
private RandomVariable drift;
private RandomVariable volatilityOnPaths;
/**
* Create a Monte-Carlo simulation using given time discretization.
*
* @param timeDiscretization The time discretization
* @param numberOfPaths The number of Monte-Carlo path to be used
* @param initialValue Spot value
* @param riskFreeRate The risk free rate
* @param volatility The log volatility
*/
public MonteCarloBlackScholesModel2(
TimeDiscretization timeDiscretization,
int numberOfPaths,
double initialValue,
double riskFreeRate,
double volatility) {
super(timeDiscretization, 1 /* numberOfComponents */ , 1 /* numberOfFactors */, numberOfPaths, 3141 /* seed */);
this.initialValue = initialValue;
this.riskFreeRate = riskFreeRate;
this.volatility = volatility;
/*
* The interface definition requires that we provide the drift and the volatility in terms of random variables.
* We construct the corresponding random variables here and will return (immutable) references to them.
*/
this.initialValueVector[0] = new RandomVariableFromDoubleArray(0.0, initialValue);
this.drift = new RandomVariableFromDoubleArray(0.0, riskFreeRate);
this.volatilityOnPaths = new RandomVariableFromDoubleArray(0.0, volatility);
}
/**
* Create a Monte-Carlo simulation using given time discretization.
*
* @param timeDiscretization The time discretization.
* @param numberOfPaths The number of Monte-Carlo path to be used.
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @param seed The seed for the random number generator.
*/
public MonteCarloBlackScholesModel2(
TimeDiscretization timeDiscretization,
int numberOfPaths,
double initialValue,
double riskFreeRate,
double volatility,
int seed) {
super(timeDiscretization, 1 /* numberOfComponents */ , 1 /* numberOfFactors */, numberOfPaths, seed);
this.initialValue = initialValue;
this.riskFreeRate = riskFreeRate;
this.volatility = volatility;
/*
* The interface definition requires that we provide the drift and the volatility in terms of random variables.
* We construct the corresponding random variables here and will return (immutable) references to them.
*/
this.initialValueVector[0] = new RandomVariableFromDoubleArray(0.0, initialValue);
this.drift = new RandomVariableFromDoubleArray(0.0, riskFreeRate);
this.volatilityOnPaths = new RandomVariableFromDoubleArray(0.0, volatility);
}
@Override
public LocalDateTime getReferenceDate() {
throw new UnsupportedOperationException("This model does not provide a reference date. Reference dates will be mandatory in a future version.");
}
@Override
public int getNumberOfAssets() {
return 1;
}
/**
* @return Returns the initialValue.
*/
@Override
public RandomVariable[] getInitialValue() {
return initialValueVector;
}
@Override
public RandomVariable getDrift(int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor) {
return drift;
}
@Override
public RandomVariable getFactorLoading(int timeIndex, int factor, int component, RandomVariable[] realizationAtTimeIndex) {
return volatilityOnPaths;
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.assetderivativevaluation.AssetModelMonteCarloSimulationModel#getAssetValue(int, int)
*/
@Override
public RandomVariable getAssetValue(int timeIndex, int assetIndex) {
return getProcessValue(timeIndex, assetIndex);
}
@Override
public RandomVariable getAssetValue(double time, int assetIndex) {
return getAssetValue(getTimeIndex(time), assetIndex);
}
@Override
public RandomVariable getMonteCarloWeights(double time) {
return getMonteCarloWeights(getTimeIndex(time));
}
@Override
public RandomVariable getNumeraire(int timeIndex)
{
double time = getTime(timeIndex);
return getNumeraire(time);
}
@Override
public RandomVariable getNumeraire(double time)
{
double numeraireValue = Math.exp(riskFreeRate * time);
return new RandomVariableFromDoubleArray(time, numeraireValue);
}
@Override
public RandomVariable getRandomVariableForConstant(double value) {
return getBrownianMotion().getRandomVariableForConstant(value);
}
@Override
public String toString() {
return super.toString() + "\n" +
"MonteCarloBlackScholesModelByInheritance:\n" +
" initial value...:" + initialValue + "\n" +
" risk free rate..:" + riskFreeRate + "\n" +
" volatiliy.......:" + volatility;
}
/**
* Returns the riskFreeRate.
*
* @return The riskFreeRate.
*/
public double getRiskFreeRate() {
return riskFreeRate;
}
/**
* Returns the volatility.
*
* @return The volatility.
*/
public double getVolatility() {
return volatility;
}
@Override
public AssetModelMonteCarloSimulationModel getCloneWithModifiedSeed(int seed) {
return new MonteCarloBlackScholesModel2(this.getTimeDiscretization(), this.getNumberOfPaths(), this.getInitialValue()[0].get(0), this.getRiskFreeRate(), this.getVolatility(), seed);
}
@Override
public AssetModelMonteCarloSimulationModel getCloneWithModifiedData(Map dataModified) {
throw new UnsupportedOperationException();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy