net.finmath.optimizer.OptimizerFactoryLevenbergMarquardt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 29.05.2015
*/
package net.finmath.optimizer;
import net.finmath.optimizer.Optimizer.ObjectiveFunction;
/**
* @author Christian Fries
* @version 1.0
*/
public class OptimizerFactoryLevenbergMarquardt implements OptimizerFactory {
private final LevenbergMarquardt.RegularizationMethod regularizationMethod;
private final int maxIterations;
private final double errorTolerance;
private final int maxThreads;
public OptimizerFactoryLevenbergMarquardt(LevenbergMarquardt.RegularizationMethod regularizationMethod, int maxIterations, double errorTolerance, int maxThreads) {
super();
this.regularizationMethod = regularizationMethod;
this.maxIterations = maxIterations;
this.errorTolerance = errorTolerance;
this.maxThreads = maxThreads;
}
public OptimizerFactoryLevenbergMarquardt(int maxIterations, double errorTolerance, int maxThreads) {
this(LevenbergMarquardt.RegularizationMethod.LEVENBERG_MARQUARDT, maxIterations, errorTolerance, maxThreads);
}
public OptimizerFactoryLevenbergMarquardt(int maxIterations, int maxThreads) {
this(maxIterations, 0.0, maxThreads);
}
@Override
public Optimizer getOptimizer(final ObjectiveFunction objectiveFunction, final double[] initialParameters, double[] targetValues) {
return getOptimizer(objectiveFunction, initialParameters, null, null, null, targetValues);
}
@Override
public Optimizer getOptimizer(final ObjectiveFunction objectiveFunction, final double[] initialParameters, final double[] lowerBound,final double[] upperBound, double[] targetValues) {
return getOptimizer(objectiveFunction, initialParameters, lowerBound, upperBound, null, targetValues);
}
@Override
public Optimizer getOptimizer(final ObjectiveFunction objectiveFunction, double[] initialParameters, double[] lowerBound,double[] upperBound, double[] parameterSteps, double[] targetValues) {
return (new LevenbergMarquardt(
regularizationMethod,
initialParameters,
targetValues,
maxIterations,
maxThreads)
{
private static final long serialVersionUID = -1628631567190057495L;
@Override
public void setValues(double[] parameters, double[] values) throws SolverException {
objectiveFunction.setValues(parameters, values);
}
})
.setErrorTolerance(errorTolerance)
.setParameterSteps(parameterSteps);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy