net.finmath.timeseries.models.parametric.SimpleHistroricalSimulation Maven / Gradle / Ivy
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 15.07.2012
*/
package net.finmath.timeseries.models.parametric;
import java.util.HashMap;
import java.util.Map;
import net.finmath.timeseries.HistoricalSimulationModel;
/**
* Implementation of standard historical simulation.
*
* @author Christian Fries, Norman Seeger
* @version 1.0
*/
public class SimpleHistroricalSimulation implements HistoricalSimulationModel {
private double[] values;
private int windowIndexStart;
private int windowIndexEnd;
public SimpleHistroricalSimulation(double[] values) {
this.values = values;
this.windowIndexStart = 0;
this.windowIndexEnd = values.length-1;
}
public SimpleHistroricalSimulation(double[] values, int windowIndexStart, int windowIndexEnd) {
this.values = values;
this.windowIndexStart = windowIndexStart;
this.windowIndexEnd = windowIndexEnd;
}
/* (non-Javadoc)
* @see net.finmath.timeseries.HistoricalSimulationModel#getCloneWithWindow(int, int)
*/
@Override
public HistoricalSimulationModel getCloneWithWindow(int windowIndexStart, int windowIndexEnd) {
return new SimpleHistroricalSimulation(this.values, windowIndexStart, windowIndexEnd);
}
public double[] getSzenarios(int relAbsFlag) {
double[] szenarios = new double[windowIndexEnd-windowIndexStart+1-1];
double y;
for (int i = windowIndexStart+1; i <= windowIndexEnd; i++) {
if (relAbsFlag==1) {
y = Math.log(values[i]/values[i-1]);
//double y = (values[i]-values[i-1]))/values[i-1]);
} else {
y = values[i] - values[i-1];
}
szenarios[i-windowIndexStart-1] = y;
}
java.util.Arrays.sort(szenarios);
return szenarios;
}
public double[] getQuantilPredictions(int relAbsFlag, double[] quantiles) {
double[] szenarios = this.getSzenarios(relAbsFlag);
double[] quantileValues = new double[quantiles.length];
for(int i=0; i getBestParameters() {
return getBestParameters(null);
}
@Override
public Map getBestParameters(Map guess) {
int relAbsFlag = 1;
double[] quantiles = {0.01, 0.05, 0.5};
double[] quantileValues = this.getQuantilPredictions(relAbsFlag, quantiles);
Map results = new HashMap<>();
results.put("Szenarios", this.getSzenarios(relAbsFlag));
results.put("Quantile=1%", quantileValues[0]);
results.put("Quantile=5%", quantileValues[1]);
results.put("Quantile=50%", quantileValues[2]);
return results;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy