net.finmath.finitedifference.experimental.BlackScholesTheta Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.finitedifference.experimental;
import java.util.Arrays;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
/**
* Implementation of the theta schemes for the Black-Scholes model (still experimental).
*
* @author Ralph Rudd
* @author Christian Fries
* @author Jörg Kienitz
* @version 1.0
*/
public class BlackScholesTheta {
// Option Parameters
private double volatility = 0.4;
private double riskFreeRate = 0.06;
private double optionStrike = 50;
private double optionMaturity = 1;
// Mesh Parameters
private int numberOfPointsNegative = -100;
private int numberOfPointsPositive = 20;
private int numTimesteps = 35;
private double dx = 0.06;
// Algorithm Parameters
private double theta = 0.5;
// Derived Parameters
private double gamma = (2 * riskFreeRate) / Math.pow(volatility, 2);
private double alpha = -0.5 * (gamma - 1);
private double beta = -0.25 * Math.pow((gamma + 1), 2);
private double dtau = Math.pow(volatility, 2) * optionMaturity / (2 * numTimesteps);
private double kappa = dtau / Math.pow(dx, 2);
// Call Option Boundary Conditions
private double V_T(double stockPrice) {
return Math.max(stockPrice - optionStrike, 0);
}
private double V_0(double stockPrice, double currentTime) {
return 0;
}
private double V_inf(double stockPrice, double currentTime) {
return stockPrice - optionStrike * Math.exp(-riskFreeRate*(optionMaturity - currentTime));
}
// Transformations
private double f_s(double x) {
return optionStrike * Math.exp(x);
}
private double f_t(double tau) {
return optionMaturity - (2 * tau) / Math.pow(volatility, 2);
}
private double f(double value, double x, double tau) {
return (value / optionStrike) * Math.exp(-alpha * x - beta * tau);
}
// Heat Equation Boundary Conditions
private double u_0(double x) {
return f(V_T(f_s(x)), x, 0);
}
private double u_neg_inf(double x, double tau) {
return f(V_0(f_s(x), f_t(tau)), x, tau);
}
private double u_pos_inf(double x, double tau) {
return f(V_inf(f_s(x), f_t(tau)), x, tau);
}
public double[][] solve() {
// Create interior spatial vector for heat equation
int len = numberOfPointsPositive - numberOfPointsNegative - 1;
double[] x = new double[len];
for (int i = 0; i < len; i++) {
x[i] = (numberOfPointsNegative + 1) * dx + dx * i;
}
// Create time vector for heat equation
double[] tau = new double[numTimesteps + 1];
for (int i = 0; i < numTimesteps + 1; i++) {
tau[i] = i * dtau;
}
// Create necessary matrices
double[][] C = new double[len][len];
double[][] D = new double[len][len];
for (int i = 0; i < len; i++) {
for (int j = 0; j < len; j++) {
if (i == j) {
C[i][j] = 1 + 2 * theta * kappa;
D[i][j] = 1 - 2 * (1 - theta) * kappa;
} else if ((i == j - 1) || (i == j + 1)) {
C[i][j] = - theta * kappa;
D[i][j] = (1 - theta) * kappa;
} else {
C[i][j] = 0;
D[i][j] = 0;
}
}
}
RealMatrix CMatrix = new Array2DRowRealMatrix(C);
RealMatrix DMatrix = new Array2DRowRealMatrix(D);
DecompositionSolver solver = new LUDecomposition(CMatrix).getSolver();
// Create spatial boundary vector
double[] b = new double[len];
Arrays.fill(b, 0);
// Initialize U
double[] U = new double[len];
for (int i = 0; i < U.length; i++) {
U[i] = u_0(x[i]);
}
RealMatrix UVector = MatrixUtils.createColumnRealMatrix(U);
// Solve system
for (int m = 0; m < numTimesteps; m++) {
b[0] = (u_neg_inf(numberOfPointsNegative * dx, tau[m]) * (1 - theta) * kappa)
+ (u_neg_inf(numberOfPointsNegative * dx, tau[m + 1]) * theta * kappa);
b[len-1] = (u_pos_inf(numberOfPointsPositive * dx, tau[m]) * (1 - theta) * kappa)
+ (u_pos_inf(numberOfPointsPositive * dx, tau[m + 1]) * theta * kappa);
RealMatrix bVector = MatrixUtils.createColumnRealMatrix(b);
RealMatrix constantsMatrix = (DMatrix.multiply(UVector)).add(bVector);
UVector = solver.solve(constantsMatrix);
}
U = UVector.getColumn(0);
// Transform x to stockPrice and U to optionPrice
double[] optionPrice = new double[len];
double[] stockPrice = new double[len];
for (int i = 0; i < len; i++ ){
optionPrice[i] = U[i] * optionStrike *
Math.exp(alpha * x[i] + beta * tau[numTimesteps]);
stockPrice[i] = f_s(x[i]);
}
double[][] stockAndOptionPrice = new double[2][len];
stockAndOptionPrice[0] = stockPrice;
stockAndOptionPrice[1] = optionPrice;
return stockAndOptionPrice;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy