net.finmath.fouriermethod.calibration.models.CalibratableHestonModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.fouriermethod.calibration.models;
import net.finmath.fouriermethod.calibration.ScalarParameterInformation;
import net.finmath.fouriermethod.calibration.ScalarParameterInformationImplementation;
import net.finmath.fouriermethod.calibration.Unconstrained;
import net.finmath.fouriermethod.models.HestonModel;
import net.finmath.modelling.ModelDescriptor;
import net.finmath.modelling.descriptor.HestonModelDescriptor;
/**
* This class is creates new instances of HestonModel and communicates with the optimization algorithm.
*
* This class provides clones of herself: in such a way the information concerning constraints is not lost.
*
* The method getCharacteristicFunction is then passed to the FFT pricing routine.
*
* @author Alessandro Gnoatto
*/
public class CalibratableHestonModel implements CalibratableProcess {
private final HestonModelDescriptor descriptor;
private final ScalarParameterInformation volatilityInfo;
private final ScalarParameterInformation thetaInfo;
private final ScalarParameterInformation kappaInfo;
private final ScalarParameterInformation xiInfo;
private final ScalarParameterInformation rhoInfo;
private final boolean applyFellerConstraint;
/*
* Upper and lower bounds are collected here for convenience:
* such vectors are then passed to the factory of the optimization algorithm.
* In this way we guarantee consistency between the constraints in the model
* and the constraints in the optimizer factory.
*/
private final double[] parameterUpperBounds;
private final double[] parameterLowerBounds;
/**
* Basic constructor where all parameters are to be calibrated.
* All parameters are unconstrained.
*
* @param descriptor The model descriptor for the Heston model.
*/
public CalibratableHestonModel(HestonModelDescriptor descriptor) {
super();
this.descriptor = descriptor;
this.volatilityInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
this.thetaInfo =new ScalarParameterInformationImplementation(true, new Unconstrained());
this.kappaInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
this.xiInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
this.rhoInfo = new ScalarParameterInformationImplementation(true, new Unconstrained());
this.applyFellerConstraint = false;
this.parameterUpperBounds = extractUpperBounds();
this.parameterLowerBounds = extractLowerBounds();
}
/**
* This constructor allows for the specification of constraints.
* This is very liberal since we can impose different types of constraints.
* The choice on the parameters to be applied is left to the user.
* This implies that he user could create Heston models which are not admissible in the sense of Duffie Filipovic and Schachermayer (2003).
* For example, it is up to the user to impose constraints such that the product of kappa and theta is positive.
*
* @param descriptor The model descriptor for the Heston model.
* @param volatilityConstraint The volatility constraint.
* @param thetaConstraint The constraint for the theta parameter.
* @param kappaConstraint The constraint for the kappa parameter.
* @param xiConstraint The constraint for the xi parameter.
* @param rhoConstraint The constraint for the rho parameter.
* @param applyFellerConstraint If true, the Feller constraint is applied.
*/
public CalibratableHestonModel(HestonModelDescriptor descriptor, ScalarParameterInformation volatilityConstraint,
ScalarParameterInformation thetaConstraint, ScalarParameterInformation kappaConstraint, ScalarParameterInformation xiConstraint,
ScalarParameterInformation rhoConstraint, boolean applyFellerConstraint) {
this.descriptor = descriptor;
this.volatilityInfo = volatilityConstraint;
this.thetaInfo = thetaConstraint;
this.kappaInfo = kappaConstraint;
this.xiInfo = xiConstraint;
this.rhoInfo = rhoConstraint;
this.applyFellerConstraint = applyFellerConstraint;
this.parameterUpperBounds = extractUpperBounds();
this.parameterLowerBounds = extractLowerBounds();
}
@Override
public CalibratableHestonModel getCloneForModifiedParameters(double[] parameters) {
//If the parameters are to be calibrated we update the value, otherwise we use the stored one.
double volatility = volatilityInfo.getIsParameterToCalibrate() == true ? volatilityInfo.getConstraint().apply(parameters[0]) : descriptor.getVolatility();
double theta = thetaInfo.getIsParameterToCalibrate() == true ? thetaInfo.getConstraint().apply(parameters[1]) : descriptor.getTheta();
double kappa = kappaInfo.getIsParameterToCalibrate() == true ? kappaInfo.getConstraint().apply(parameters[2]) : descriptor.getKappa();
double xi = xiInfo.getIsParameterToCalibrate() == true ? xiInfo.getConstraint().apply(parameters[3]) : descriptor.getXi();
double rho = rhoInfo.getIsParameterToCalibrate() == true ? rhoInfo.getConstraint().apply(parameters[4]) : descriptor.getRho();
if(applyFellerConstraint && 2*kappa*theta < xi*xi) {
//bump long term volatility so that the Feller test is satisfied.
theta = xi*xi / (2 * kappa) + 1E-9;
}else {
//nothing to do;
}
HestonModelDescriptor newDescriptor = new HestonModelDescriptor(descriptor.getReferenceDate(),
descriptor.getInitialValue(),descriptor.getDiscountCurveForForwardRate(), descriptor.getDiscountCurveForForwardRate(),
volatility, theta, kappa, xi, rho);
return new CalibratableHestonModel(newDescriptor,this.volatilityInfo,this.thetaInfo,this.kappaInfo,this.xiInfo,this.rhoInfo,this.applyFellerConstraint);
}
@Override
public ModelDescriptor getModelDescriptor() {
return descriptor;
}
@Override
public HestonModel getCharacteristicFunctionModel() {
return new HestonModel(descriptor.getInitialValue(),descriptor.getDiscountCurveForForwardRate(),
descriptor.getVolatility(),descriptor.getDiscountCurveForForwardRate(),
descriptor.getTheta(),descriptor.getKappa(),descriptor.getXi(),descriptor.getRho());
}
@Override
public double[] getParameterUpperBounds() {
return parameterUpperBounds;
}
@Override
public double[] getParameterLowerBounds() {
return parameterLowerBounds;
}
private double[] extractUpperBounds() {
double[] upperBounds = new double[5];
double threshold = 1E6;
upperBounds[0] = volatilityInfo.getConstraint().getUpperBound() > threshold ? threshold : volatilityInfo.getConstraint().getUpperBound();
upperBounds[1] = thetaInfo.getConstraint().getUpperBound() > threshold ? threshold : thetaInfo.getConstraint().getUpperBound();
upperBounds[2] = kappaInfo.getConstraint().getUpperBound() > threshold ? threshold : kappaInfo.getConstraint().getUpperBound();
upperBounds[3] = xiInfo.getConstraint().getUpperBound() > threshold ? threshold : xiInfo.getConstraint().getUpperBound();
upperBounds[4] = rhoInfo.getConstraint().getUpperBound() > threshold ? threshold : rhoInfo.getConstraint().getUpperBound();
return upperBounds;
}
private double[] extractLowerBounds() {
double[] upperBounds = new double[5];
double threshold = -1E6;
upperBounds[0] = volatilityInfo.getConstraint().getLowerBound() < threshold ? threshold : volatilityInfo.getConstraint().getLowerBound();
upperBounds[1] = thetaInfo.getConstraint().getLowerBound() < threshold ? threshold : thetaInfo.getConstraint().getLowerBound();
upperBounds[2] = kappaInfo.getConstraint().getLowerBound() < threshold ? threshold : kappaInfo.getConstraint().getLowerBound();
upperBounds[3] = xiInfo.getConstraint().getLowerBound() < threshold ? threshold : xiInfo.getConstraint().getLowerBound();
upperBounds[4] = rhoInfo.getConstraint().getLowerBound() < threshold ? threshold : rhoInfo.getConstraint().getLowerBound();
return upperBounds;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy