net.finmath.montecarlo.assetderivativevaluation.models.InhomogenousBachelierModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 20.01.2004
*/
package net.finmath.montecarlo.assetderivativevaluation.models;
import java.util.Map;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.stochastic.RandomVariable;
/**
* This class implements a (variant of the) Bachelier model, that is, it provides the drift and volatility specification
* and performs the calculation of the numeraire (consistent with the dynamics, i.e. the drift).
*
* The model is
* \[
* dS = r S dt + \sigma dW, \quad S(0) = S_{0},
* \]
* \[
* dN = r N dt, \quad N(0) = N_{0},
* \]
*
* The class provides the model of S to an {@link net.finmath.montecarlo.process.MonteCarloProcess}
via the specification of
* \( f = \text{identity} \), \( \mu = \frac{exp(r \Delta t_{i}) - 1}{\Delta t_{i}} S(t_{i}) \), \( \lambda_{1,1} = \sigma \frac{exp(-2 r t_{i}) - exp(-2 r t_{i+1})}{2 r \Delta t_{i}} \), i.e.,
* of the SDE
* \[
* dX = \mu dt + \lambda_{1,1} dW, \quad X(0) = \log(S_{0}),
* \]
* with \( S = X \). See {@link net.finmath.montecarlo.process.MonteCarloProcess} for the notation.
*
* The model's implied Bachelier volatility for a given maturity T is
* volatility * Math.sqrt((Math.exp(2 * riskFreeRate * optionMaturity) - 1)/(2*riskFreeRate*optionMaturity))
*
* @author Christian Fries
* @see net.finmath.montecarlo.process.MonteCarloProcess The interface for numerical schemes.
* @see net.finmath.montecarlo.model.ProcessModel The interface for models provinding parameters to numerical schemes.
* @version 1.0
*/
public class InhomogenousBachelierModel extends AbstractProcessModel {
private final double initialValue;
private final double riskFreeRate; // Actually the same as the drift (which is not stochastic)
private final double volatility;
/*
* The interface definition requires that we provide the initial value, the drift and the volatility in terms of random variables.
* We construct the corresponding random variables here and will return (immutable) references to them.
*/
private RandomVariable[] initialValueVector = new RandomVariable[1];
/**
* Create a Monte-Carlo simulation using given time discretization.
*
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The volatility.
*/
public InhomogenousBachelierModel(
double initialValue,
double riskFreeRate,
double volatility) {
super();
this.initialValue = initialValue;
this.riskFreeRate = riskFreeRate;
this.volatility = volatility;
}
@Override
public RandomVariable[] getInitialState() {
if(initialValueVector[0] == null) {
initialValueVector[0] = getRandomVariableForConstant(initialValue);
}
return initialValueVector;
}
@Override
public RandomVariable[] getDrift(int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor) {
double dt = getProcess().getTimeDiscretization().getTimeStep(timeIndex);
RandomVariable[] drift = new RandomVariable[realizationAtTimeIndex.length];
for(int componentIndex = 0; componentIndex dataModified) {
/*
* Determine the new model parameters from the provided parameter map.
*/
double newInitialValue = dataModified.get("initialValue") != null ? ((Number)dataModified.get("initialValue")).doubleValue() : initialValue;
double newRiskFreeRate = dataModified.get("riskFreeRate") != null ? ((Number)dataModified.get("riskFreeRate")).doubleValue() : this.getRiskFreeRate();
double newVolatility = dataModified.get("volatility") != null ? ((Number)dataModified.get("volatility")).doubleValue() : this.getVolatility();
return new InhomogenousBachelierModel(newInitialValue, newRiskFreeRate, newVolatility);
}
@Override
public String toString() {
return super.toString() + "\n" +
"BachelierModel:\n" +
" initial value...:" + initialValue + "\n" +
" risk free rate..:" + riskFreeRate + "\n" +
" volatiliy.......:" + volatility;
}
/**
* Returns the risk free rate parameter of this model.
*
* @return Returns the riskFreeRate.
*/
public double getRiskFreeRate() {
return riskFreeRate;
}
/**
* Returns the volatility parameter of this model.
*
* @return Returns the volatility.
*/
public double getVolatility() {
return volatility;
}
public double getImpliedBachelierVolatility(double maturity) {
// The Bachelier volatiltiy is the square-root of (the integral of the square of sigma * Math.exp(r t) divided by t)
return volatility * Math.sqrt((Math.exp(2 * riskFreeRate * maturity) - 1)/(2*riskFreeRate*maturity));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy