All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.models.HullWhiteModel Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 09.02.2004
 */
package net.finmath.montecarlo.interestrate.models;

import java.io.Serializable;
import java.time.LocalDateTime;
import java.time.LocalTime;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;

import net.finmath.exception.CalculationException;
import net.finmath.marketdata.model.AnalyticModel;
import net.finmath.marketdata.model.curves.DiscountCurve;
import net.finmath.marketdata.model.curves.DiscountCurveFromForwardCurve;
import net.finmath.marketdata.model.curves.ForwardCurve;
import net.finmath.montecarlo.AbstractRandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.montecarlo.interestrate.CalibrationProduct;
import net.finmath.montecarlo.interestrate.LIBORModel;
import net.finmath.montecarlo.interestrate.ShortRateModel;
import net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel;
import net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModelCalibrateable;
import net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModelParametric;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;
import net.finmath.time.TimeDiscretization;

/**
 * Implements a Hull-White model with time dependent mean reversion speed and time dependent short rate volatility.
 *
 * 

* Model Dynamics *

* * The Hull-While model assumes the following dynamic for the short rate: * \[ d r(t) = ( \theta(t) - a(t) r(t) ) d t + \sigma(t) d W(t) \text{,} \quad r(t_{0}) = r_{0} \text{,} \] * where the function \( \theta \) determines the calibration to the initial forward curve, * \( a \) is the mean reversion and \( \sigma \) is the instantaneous volatility. * * The dynamic above is under the equivalent martingale measure corresponding to the numeraire * \[ N(t) = \exp\left( \int_0^t r(\tau) \mathrm{d}\tau \right) \text{.} \] * * The main task of this class is to provide the risk-neutral drift and the volatility to the numerical scheme (given the volatility model), simulating * \( r(t_{i}) \). The class then also provides and the corresponding numeraire and forward rates (LIBORs). * *

* Time Discrete Model *

* * Assuming piecewise constant coefficients (mean reversion speed \( a \) and short * rate volatility \( \sigma \) the class specifies the drift and factor loadings as * piecewise constant functions for an Euler-scheme. * The class provides the exact Euler step for the joint distribution of * \( (r,N) \), where \( r \) denotes the short rate and \( N \) denotes the * numeraire, following the scheme in ssrn.com/abstract=2737091. * * More specifically (assuming a constant mean reversion speed \( a \) for a moment), considering * \[ \Delta \bar{r}(t_{i}) = \frac{1}{t_{i+1}-t_{i}} \int_{t_{i}}^{t_{i+1}} d r(t) \] * we find from * \[ \exp(-a t) \ \left( \mathrm{d} \left( \exp(a t) r(t) \right) \right) \ = \ a r(t) + \mathrm{d} r(t) \ = \ \theta(t) \mathrm{d}t + \sigma(t) \mathrm{d}W(t) \] * that * \[ \exp(a t_{i+1}) r(t_{i+1}) - \exp(a t_{i}) r(t_{i}) \ = \ \int_{t_{i}}^{t_{i+1}} \left[ \exp(a t) \theta(t) \mathrm{d}t + \exp(a t) \sigma(t) \mathrm{d}W(t) \right] \] * that is * \[ r(t_{i+1}) - r(t_{i}) \ = \ -(1-\exp(-a (t_{i+1}-t_{i})) r(t_{i}) + \int_{t_{i}}^{t_{i+1}} \left[ \exp(-a (t_{i+1}-t)) \theta(t) \mathrm{d}t + \exp(-a (t_{i+1}-t)) \sigma(t) \mathrm{d}W(t) \right] \] * * Assuming piecewise constant \( \sigma \) and \( \theta \), being constant over \( (t_{i},t_{i}+\Delta t_{i}) \), we thus find * \[ r(t_{i+1}) - r(t_{i}) \ = \ \frac{1-\exp(-a \Delta t_{i})}{a \Delta t_{i}} \left( ( \theta(t_{i}) - a \bar{r}(t_{i})) \Delta t_{i} \right) + \sqrt{\frac{1-\exp(-2 a \Delta t_{i})}{2 a \Delta t_{i}}} \sigma(t_{i}) \Delta W(t_{i}) \] . * * In other words, the Euler scheme is exact if the mean reversion \( a \) is replaced by the effective mean reversion * \( \frac{1-\exp(-a \Delta t_{i})}{a \Delta t_{i}} a \) and the volatility is replaced by the * effective volatility \( \sqrt{\frac{1-\exp(-2 a \Delta t_{i})}{2 a \Delta t_{i}}} \sigma(t_{i}) \). * * In the calculations above the mean reversion speed is treated as a constants, but it is straight * forward to see that the same holds for piecewise constant mean reversion speeds, replacing * the expression \( a \ t \) by \( \int_{0}^t a(s) \mathrm{d}s \). * *

* Calibration *

* * The drift of the short rate is calibrated to the given forward curve using * \[ \theta(t) = \frac{\partial}{\partial T} f(0,t) + a(t) f(0,t) + \phi(t) \text{,} \] * where the function \( f \) denotes the instantanenous forward rate and * \( \phi(t) = \frac{1}{2} a \sigma^{2}(t) B(t)^{2} + \sigma^{2}(t) B(t) \frac{\partial}{\partial t} B(t) \) with \( B(t) = \frac{1-\exp(-a t)}{a} \). * *

* Volatility Model *

* * The Hull-White model is essentially equivalent to LIBOR Market Model where the forward rate normal volatility \( \sigma(t,T) \) is * given by * \[ \sigma(t,T_{i}) \ = \ (1 + L_{i}(t) (T_{i+1}-T_{i})) \sigma(t) \exp(-a (T_{i}-t)) \frac{1-\exp(-a (T_{i+1}-T_{i}))}{a (T_{i+1}-T_{i})} \] * (where \( \{ T_{i} \} \) is the forward rates tenor time discretization (note that this is the normal volatility, not the log-normal volatility) * (see ssrn.com/abstract=2737091 for details on the derivation). * Hence, we interpret both, short rate mean reversion speed and short rate volatility as part of the volatility model. * * The mean reversion speed and the short rate volatility have to be provided to this class via an object implementing * {@link net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel}. * * @see net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel * @see ssrn.com/abstract=2737091 * * @author Christian Fries * @version 1.4 */ public class HullWhiteModel extends AbstractProcessModel implements ShortRateModel, LIBORModel, Serializable { private static final long serialVersionUID = 8677410149401310062L; private final TimeDiscretization liborPeriodDiscretization; private String forwardCurveName; private AnalyticModel analyticModel; private ForwardCurve forwardRateCurve; private DiscountCurve discountCurve; private DiscountCurve discountCurveFromForwardCurve; private final AbstractRandomVariableFactory randomVariableFactory; private final ShortRateVolatilityModel volatilityModel; private final Map properties; private final List discountFactorCache = new ArrayList<>(); private final List discountFactorForForwardCurveCache = new ArrayList<>();; /** * Creates a Hull-White model which implements LIBORMarketModel. * * @param randomVariableFactory The factory to be used to construct random variables. * @param liborPeriodDiscretization The forward rate discretization to be used in the getLIBOR method. * @param analyticModel The analytic model to be used (currently not used, may be null). * @param forwardRateCurve The forward curve to be used (currently not used, - the model uses disocuntCurve only. * @param discountCurve The disocuntCurve (currently also used to determine the forward curve). * @param volatilityModel The volatility model specifying mean reversion and instantaneous volatility of the short rate. * @param properties A map specifying model properties (currently not used, may be null). */ public HullWhiteModel( AbstractRandomVariableFactory randomVariableFactory, TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, ShortRateVolatilityModel volatilityModel, Map properties ) { this.randomVariableFactory = randomVariableFactory; this.liborPeriodDiscretization = liborPeriodDiscretization; this.analyticModel = analyticModel; this.forwardRateCurve = forwardRateCurve; this.discountCurve = discountCurve; this.volatilityModel = volatilityModel; this.properties = null;//properties; // Note: if properties are stored, this may cause issues in serialization. Field will be removed. this.discountCurveFromForwardCurve = new DiscountCurveFromForwardCurve(forwardRateCurve); } /** * Creates a Hull-White model which implements LIBORMarketModel. * * @param liborPeriodDiscretization The forward rate discretization to be used in the getLIBOR method. * @param analyticModel The analytic model to be used (currently not used, may be null). * @param forwardRateCurve The forward curve to be used (currently not used, - the model uses disocuntCurve only. * @param discountCurve The disocuntCurve (currently also used to determine the forward curve). * @param volatilityModel The volatility model specifying mean reversion and instantaneous volatility of the short rate. * @param properties A map specifying model properties (currently not used, may be null). */ public HullWhiteModel( TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, ShortRateVolatilityModel volatilityModel, Map properties ) { this(new RandomVariableFactory(), liborPeriodDiscretization, analyticModel, forwardRateCurve, discountCurve, volatilityModel, properties); } /** * Creates a Hull-White model which implements LIBORMarketModel. * * @param randomVariableFactory The randomVariableFactory * @param liborPeriodDiscretization The forward rate discretization to be used in the getLIBOR method. * @param analyticModel The analytic model to be used (currently not used, may be null). * @param forwardRateCurve The forward curve to be used (currently not used, - the model uses disocuntCurve only. * @param discountCurve The disocuntCurve (currently also used to determine the forward curve). * @param volatilityModel The volatility model specifying mean reversion and instantaneous volatility of the short rate. * @param calibrationProducts The products to be used for calibration * @param properties The calibration properties * @return A (possibly calibrated) Hull White model. * @throws CalculationException Thrown if calibration fails. */ public static HullWhiteModel of( AbstractRandomVariableFactory randomVariableFactory, TimeDiscretization liborPeriodDiscretization, AnalyticModel analyticModel, ForwardCurve forwardRateCurve, DiscountCurve discountCurve, ShortRateVolatilityModel volatilityModel, CalibrationProduct[] calibrationProducts, Map properties ) throws CalculationException { HullWhiteModel model = new HullWhiteModel(randomVariableFactory, liborPeriodDiscretization, analyticModel, forwardRateCurve, discountCurve, volatilityModel, properties); // Perform calibration, if data is given if(calibrationProducts != null && calibrationProducts.length > 0) { ShortRateVolatilityModelCalibrateable volatilityModelParametric = null; try { volatilityModelParametric = (ShortRateVolatilityModelCalibrateable)volatilityModel; } catch(Exception e) { throw new ClassCastException("Calibration restricted to covariance models implementing HullWhiteModelCalibrateable."); } Map calibrationParameters = null; if(properties != null && properties.containsKey("calibrationParameters")) { calibrationParameters = (Map)properties.get("calibrationParameters"); } ShortRateVolatilityModelCalibrateable volatilityModelCalibrated = volatilityModelParametric.getCloneCalibrated(model, calibrationProducts, calibrationParameters); HullWhiteModel modelCalibrated = model.getCloneWithModifiedVolatilityModel(volatilityModelCalibrated); return modelCalibrated; } else { return model; } } @Override public LocalDateTime getReferenceDate() { return LocalDateTime.of(discountCurve.getReferenceDate(), LocalTime.of(0, 0)); } @Override public int getNumberOfComponents() { return 2; } @Override public RandomVariable applyStateSpaceTransform(int componentIndex, RandomVariable randomVariable) { return randomVariable; } @Override public RandomVariable applyStateSpaceTransformInverse(int componentIndex, RandomVariable randomVariable) { return randomVariable; } @Override public RandomVariable[] getInitialState() { // Initial value is zero - BrownianMotion serves as a factory here. RandomVariable zero = getProcess().getStochasticDriver().getRandomVariableForConstant(0.0); return new RandomVariable[] { zero, zero }; } @Override public RandomVariable getNumeraire(double time) throws CalculationException { if(time == getTime(0)) { // Initial value of numeraire is one - BrownianMotion serves as a factory here. RandomVariable one = getProcess().getStochasticDriver().getRandomVariableForConstant(1.0); return one; } int timeIndex = getProcess().getTimeIndex(time); if(timeIndex < 0) { /* * time is not part of the time discretization. */ // Find the time index prior to the current time (note: if time does not match a discretization point, we get a negative value, such that -index is next point). int previousTimeIndex = getProcess().getTimeIndex(time); if(previousTimeIndex < 0) { previousTimeIndex = -previousTimeIndex-1; } previousTimeIndex--; double previousTime = getProcess().getTime(previousTimeIndex); double nextTime = getProcess().getTime(previousTimeIndex+1); // Log-linear interpolation return getNumeraire(previousTime).log().mult(nextTime-time) .add(getNumeraire(nextTime).log().mult(time-previousTime)) .div(nextTime-previousTime).exp(); } RandomVariable logNum = getProcessValue(timeIndex, 1).add(getV(0,time).mult(0.5)); RandomVariable discountFactorFromForwardCurve = getDiscountFactorFromForwardCurve(timeIndex); RandomVariable numeraire = logNum.exp().div(discountFactorFromForwardCurve); /* * Adjust for discounting, i.e. funding or collateralization */ if(discountCurve != null) { // This includes a control for zero bonds RandomVariable discountFactor = getDiscountFactor(timeIndex); RandomVariable deterministicNumeraireAdjustment = numeraire.invert().average().div(discountFactor); numeraire = numeraire.mult(deterministicNumeraireAdjustment); } return numeraire; } @Override public RandomVariable[] getDrift(int timeIndex, RandomVariable[] realizationAtTimeIndex, RandomVariable[] realizationPredictor) { double time = getProcess().getTime(timeIndex); double timeNext = getProcess().getTime(timeIndex+1); int timeIndexVolatility = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexVolatility < 0) { timeIndexVolatility = -timeIndexVolatility-2; } RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndexVolatility); RandomVariable driftShortRate = realizationAtTimeIndex[0].mult(meanReversion.mult(getB(time,timeNext).div(-1*(timeNext-time)))); RandomVariable driftLogNumeraire = realizationAtTimeIndex[0].mult(getB(time,timeNext).div(timeNext-time)); return new RandomVariable[] { driftShortRate, driftLogNumeraire }; } @Override public RandomVariable[] getFactorLoading(int timeIndex, int componentIndex, RandomVariable[] realizationAtTimeIndex) { double time = getProcess().getTime(timeIndex); double timeNext = getProcess().getTime(timeIndex+1); int timeIndexVolatility = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexVolatility < 0) { timeIndexVolatility = -timeIndexVolatility-2; } RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndexVolatility); RandomVariable meanReversionTimesTime = meanReversion.mult(-2.0 * (timeNext-time)); // double scaling = Math.sqrt((1.0-Math.exp(-2.0 * meanReversion * (timeNext-time)))/(2.0 * meanReversion * (timeNext-time))); RandomVariable scaling = meanReversionTimesTime.exp().sub(1.0).div(meanReversionTimesTime).sqrt(); RandomVariable volatilityEffective = scaling.mult(volatilityModel.getVolatility(timeIndexVolatility)); RandomVariable factorLoading1, factorLoading2; if(componentIndex == 0) { // Factor loadings for the short rate driver. factorLoading1 = volatilityEffective; factorLoading2 = new Scalar(0.0); } else if(componentIndex == 1) { // Factor loadings for the numeraire driver. RandomVariable volatilityLogNumeraire = getV(time,timeNext).div(timeNext-time).sqrt(); RandomVariable rho = getDV(time,timeNext).div(timeNext-time).div(volatilityEffective.mult(volatilityLogNumeraire)); factorLoading1 = volatilityLogNumeraire.mult(rho); factorLoading2 = volatilityLogNumeraire.mult(rho.squared().sub(1).mult(-1).sqrt()); } else { throw new IllegalArgumentException(); } return new RandomVariable[] { factorLoading1, factorLoading2 }; } /* (non-Javadoc) * @see net.finmath.montecarlo.model.ProcessModel#getRandomVariableForConstant(double) */ @Override public RandomVariable getRandomVariableForConstant(double value) { return getProcess().getStochasticDriver().getRandomVariableForConstant(value); } @Override public RandomVariable getLIBOR(double time, double periodStart, double periodEnd) throws CalculationException { return getZeroCouponBond(time, periodStart).div(getZeroCouponBond(time, periodEnd)).sub(1.0).div(periodEnd-periodStart); } @Override public RandomVariable getLIBOR(int timeIndex, int liborIndex) throws CalculationException { return getZeroCouponBond(getProcess().getTime(timeIndex), getLiborPeriod(liborIndex)).div(getZeroCouponBond(getProcess().getTime(timeIndex), getLiborPeriod(liborIndex+1))).sub(1.0).div(getLiborPeriodDiscretization().getTimeStep(liborIndex)); } @Override public TimeDiscretization getLiborPeriodDiscretization() { return liborPeriodDiscretization; } @Override public int getNumberOfLibors() { return liborPeriodDiscretization.getNumberOfTimeSteps(); } @Override public double getLiborPeriod(int timeIndex) { return liborPeriodDiscretization.getTime(timeIndex); } @Override public int getLiborPeriodIndex(double time) { return liborPeriodDiscretization.getTimeIndex(time); } @Override public AnalyticModel getAnalyticModel() { return analyticModel; } @Override public DiscountCurve getDiscountCurve() { return discountCurve; } @Override public ForwardCurve getForwardRateCurve() { return forwardRateCurve; } @Override public LIBORModel getCloneWithModifiedData(Map dataModified) { if(dataModified == null) { return new HullWhiteModel(randomVariableFactory, liborPeriodDiscretization, analyticModel, forwardRateCurve, discountCurve, volatilityModel, properties); } RandomVariableFactory newRandomVariableFactory = (RandomVariableFactory) dataModified.getOrDefault("randomVariableFactory", randomVariableFactory); ShortRateVolatilityModel newVolatilityModel = (ShortRateVolatilityModel) dataModified.getOrDefault("volatilityModel", volatilityModel); return new HullWhiteModel(newRandomVariableFactory, liborPeriodDiscretization, analyticModel, forwardRateCurve, discountCurve, newVolatilityModel, properties); } /** * Returns the "short rate" from timeIndex to timeIndex+1. * * @param timeIndex The time index (corresponding to {@link getTime()). * @return The "short rate" from timeIndex to timeIndex+1. * @throws CalculationException Thrown if simulation failed. */ private RandomVariable getShortRate(int timeIndex) throws CalculationException { double time = getProcess().getTime(timeIndex); double timePrev = timeIndex > 0 ? getProcess().getTime(timeIndex-1) : time; double timeNext = getProcess().getTime(timeIndex+1); RandomVariable zeroRate = getDiscountFactorFromForwardCurve(timeIndex).div(getDiscountFactorFromForwardCurve(timeNext)).log().div(timeNext-time); RandomVariable alpha = getDV(0, time).add(zeroRate); RandomVariable value = getProcess().getProcessValue(timeIndex, 0); value = value.add(alpha); return value; } private RandomVariable getZeroCouponBond(double time, double maturity) throws CalculationException { int timeIndex = getProcess().getTimeIndex(time); if(timeIndex < 0) { int timeIndexLo = -timeIndex-1-1; double timeLo = getProcess().getTime(timeIndexLo); return getZeroCouponBond(timeLo, maturity).mult(getShortRate(timeIndexLo).mult(time-timeLo).exp()); } RandomVariable shortRate = getShortRate(timeIndex); RandomVariable A = getA(time, maturity); RandomVariable B = getB(time, maturity); return shortRate.mult(B.mult(-1)).exp().mult(A); } /** * This is the shift alpha of the process, which essentially represents * the integrated drift of the short rate (without the interest rate curve related part). * * @param timeIndex Time index associated with the time discretization obtained from getProcess * @return The integrated drift (integrating from 0 to getTime(timeIndex)). */ private RandomVariable getIntegratedDriftAdjustment(int timeIndex) { RandomVariable integratedDriftAdjustment = new Scalar(0.0); for(int i=1; i<=timeIndex; i++) { double t = getProcess().getTime(i-1); double t2 = getProcess().getTime(i); int timeIndexVolatilityModel = volatilityModel.getTimeDiscretization().getTimeIndex(t); if(timeIndexVolatilityModel < 0) { timeIndexVolatilityModel = -timeIndexVolatilityModel-2; // Get timeIndex corresponding to previous point } RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndexVolatilityModel); integratedDriftAdjustment = integratedDriftAdjustment.add(getShortRateConditionalVariance(0, t).mult(getB(t,t2))).sub(integratedDriftAdjustment.mult(meanReversion.mult(getB(t,t2)))); } return integratedDriftAdjustment; } /** * Returns A(t,T) where * \( A(t,T) = P(T)/P(t) \cdot exp(B(t,T) \cdot f(0,t) - \frac{1}{2} \phi(0,t) * B(t,T)^{2} ) \) * and * \( \phi(t,T) \) is the value calculated from integrating \( ( \sigma(s) exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau ) )^{2} \) with respect to s from t to T * in getShortRateConditionalVariance. * * @param time The parameter t. * @param maturity The parameter T. * @return The value A(t,T). */ private RandomVariable getA(double time, double maturity) { int timeIndex = getProcess().getTimeIndex(time); double timeStep = getProcess().getTimeDiscretization().getTimeStep(timeIndex); RandomVariable zeroRate = getDiscountFactorFromForwardCurve(timeIndex).div(getDiscountFactorFromForwardCurve(timeIndex+1)).log().div(timeStep); RandomVariable forwardBond = getDiscountFactorFromForwardCurve(maturity).div(getDiscountFactorFromForwardCurve(time)).log(); RandomVariable B = getB(time,maturity); RandomVariable lnA = B.mult(zeroRate).sub(B.squared().mult(getShortRateConditionalVariance(0,time).div(2))).add(forwardBond); return lnA.exp(); } /** * Calculates \( \int_{t}^{T} a(s) \mathrm{d}s \), where \( a \) is the mean reversion parameter. * * @param time The parameter t. * @param maturity The parameter T. * @return The value of \( \int_{t}^{T} a(s) \mathrm{d}s \). */ private RandomVariable getMRTime(double time, double maturity) { int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } RandomVariable integral = new Scalar(0.0); double timePrev = time; double timeNext; for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndex-1); integral = integral.add(meanReversion.mult(timeNext-timePrev)); timePrev = timeNext; } timeNext = maturity; RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndexEnd); integral = integral.add(meanReversion.mult(timeNext-timePrev)); return integral; } /** * Calculates \( B(t,T) = \int_{t}^{T} \exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau) \mathrm{d}s \), where a is the mean reversion parameter. * For a constant \( a \) this results in \( \frac{1-\exp(-a (T-t)}{a} \), but the method also supports piecewise constant \( a \)'s. * * @param time The parameter t. * @param maturity The parameter T. * @return The value of B(t,T). */ private RandomVariable getB(double time, double maturity) { int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } RandomVariable integral = new Scalar(0.0); double timePrev = time; double timeNext; for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndex-1); integral = integral.add( getMRTime(timeNext,maturity).mult(-1.0).exp().sub( getMRTime(timePrev,maturity).mult(-1.0).exp()).div(meanReversion)); timePrev = timeNext; } RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndexEnd); timeNext = maturity; integral = integral.add( getMRTime(timeNext,maturity).mult(-1.0).exp().sub( getMRTime(timePrev,maturity).mult(-1.0).exp()).div(meanReversion)); return integral; } /** * Calculates the drift adjustment for the log numeraire, that is * \( * \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s * \) where \( B(t,T) = \int_{t}^{T} \exp(-\int_{s}^{T} a(\tau) \mathrm{d}\tau) \mathrm{d}s \). * * @param time The parameter t in \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \) * @param maturity The parameter T in \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \) * @return The integral \( \int_{t}^{T} \sigma^{2}(s) B(s,T)^{2} \mathrm{d}s \). */ private RandomVariable getV(double time, double maturity) { if(time == maturity) { return new Scalar(0.0); } int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } RandomVariable integral = new Scalar(0.0); double timePrev = time; double timeNext; RandomVariable expMRTimePrev = getMRTime(timePrev,maturity).mult(-1).exp(); for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndex-1); RandomVariable volatility = volatilityModel.getVolatility(timeIndex-1); RandomVariable volatilityPerMeanReversionSquared = volatility.squared().div(meanReversion.squared()); RandomVariable expMRTimeNext = getMRTime(timeNext,maturity).mult(-1).exp(); integral = integral.add(volatilityPerMeanReversionSquared.mult( expMRTimeNext.sub(expMRTimePrev).mult(-2).div(meanReversion) .add( expMRTimeNext.squared().sub(expMRTimePrev.squared()).div(meanReversion).div(2.0)) .add(timeNext-timePrev) )); timePrev = timeNext; expMRTimePrev = expMRTimeNext; } timeNext = maturity; RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndexEnd); RandomVariable volatility = volatilityModel.getVolatility(timeIndexEnd); RandomVariable volatilityPerMeanReversionSquared = volatility.squared().div(meanReversion.squared()); RandomVariable expMRTimeNext = getMRTime(timeNext,maturity).mult(-1).exp(); integral = integral.add(volatilityPerMeanReversionSquared.mult( expMRTimeNext.sub(expMRTimePrev).mult(-2).div(meanReversion) .add( expMRTimeNext.squared().sub(expMRTimePrev.squared()).div(meanReversion).div(2.0)) .add(timeNext-timePrev) )); return integral; } private RandomVariable getDV(double time, double maturity) { if(time==maturity) { return new Scalar(0.0); } int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } RandomVariable integral = new Scalar(0.0); double timePrev = time; double timeNext; RandomVariable expMRTimePrev = getMRTime(timePrev,maturity).mult(-1).exp(); for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndex-1); RandomVariable volatility = volatilityModel.getVolatility(timeIndex-1); RandomVariable volatilityPerMeanReversionSquared = volatility.squared().div(meanReversion.squared()); RandomVariable expMRTimeNext = getMRTime(timeNext,maturity).mult(-1).exp(); integral = integral.add(volatilityPerMeanReversionSquared.mult( expMRTimeNext.sub(expMRTimePrev).add( expMRTimeNext.squared().sub(expMRTimePrev.squared()).div(-2.0) ) )); timePrev = timeNext; expMRTimePrev = expMRTimeNext; } timeNext = maturity; RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndexEnd); RandomVariable volatility = volatilityModel.getVolatility(timeIndexEnd); RandomVariable volatilityPerMeanReversionSquared = volatility.squared().div(meanReversion.squared()); RandomVariable expMRTimeNext = getMRTime(timeNext,maturity).mult(-1).exp(); integral = integral.add(volatilityPerMeanReversionSquared.mult( expMRTimeNext.sub(expMRTimePrev).add( expMRTimeNext.squared().sub(expMRTimePrev.squared()).div(-2.0) ) )); return integral; } /** * Calculates the variance \( \mathop{Var}(r(t) \vert r(s) ) \), that is * \( * \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau * \) where \( a \) is the meanReversion and \( \sigma \) is the short rate instantaneous volatility. * * @param time The parameter s in \( \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau \) * @param maturity The parameter t in \( \int_{s}^{t} \sigma^{2}(\tau) \exp(-2 \cdot \int_{\tau}^{t} a(u) \mathrm{d}u ) \ \mathrm{d}\tau \) * @return The conditional variance of the short rate, \( \mathop{Var}(r(t) \vert r(s) ) \). */ public RandomVariable getShortRateConditionalVariance(double time, double maturity) { int timeIndexStart = volatilityModel.getTimeDiscretization().getTimeIndex(time); if(timeIndexStart < 0) { timeIndexStart = -timeIndexStart-1; // Get timeIndex corresponding to next point } int timeIndexEnd =volatilityModel.getTimeDiscretization().getTimeIndex(maturity); if(timeIndexEnd < 0) { timeIndexEnd = -timeIndexEnd-2; // Get timeIndex corresponding to previous point } RandomVariable integral = new Scalar(0.0); double timePrev = time; double timeNext; RandomVariable expMRTimePrev = getMRTime(timePrev,maturity).mult(-2).exp(); for(int timeIndex=timeIndexStart+1; timeIndex<=timeIndexEnd; timeIndex++) { timeNext = volatilityModel.getTimeDiscretization().getTime(timeIndex); RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndex-1); RandomVariable volatility = volatilityModel.getVolatility(timeIndex-1); RandomVariable volatilitySquaredPerMeanReversion = volatility.squared().div(meanReversion); RandomVariable expMRTimeNext = getMRTime(timeNext,maturity).mult(-2).exp(); integral = integral.add(volatilitySquaredPerMeanReversion.mult(expMRTimeNext.sub(expMRTimePrev).div(2)) ); timePrev = timeNext; expMRTimePrev = expMRTimeNext; } timeNext = maturity; RandomVariable meanReversion = volatilityModel.getMeanReversion(timeIndexEnd); RandomVariable volatility = volatilityModel.getVolatility(timeIndexEnd); RandomVariable volatilitySquaredPerMeanReversion = volatility.squared().div(meanReversion); RandomVariable expMRTimeNext = getMRTime(timeNext,maturity).mult(-2).exp(); integral = integral.add(volatilitySquaredPerMeanReversion.mult(expMRTimeNext.sub(expMRTimePrev).div(2)) ); return integral; } public RandomVariable getIntegratedBondSquaredVolatility(double time, double maturity) { return getShortRateConditionalVariance(0, time).mult(getB(time,maturity).squared()); } @Override public HullWhiteModel getCloneWithModifiedVolatilityModel(ShortRateVolatilityModel volatilityModel) { return new HullWhiteModel(randomVariableFactory, liborPeriodDiscretization, analyticModel, forwardRateCurve, discountCurve, volatilityModel, properties); } @Override public ShortRateVolatilityModel getVolatilityModel() { return volatilityModel; } @Override public Map getModelParameters() { Map modelParameters = new TreeMap<>(); // Add initial values for(int timeIndex=0; timeIndex= 0) { return getDiscountFactorFromForwardCurve(timeIndex); } else { int timeIndexPrev = Math.min(-timeIndex-1, getTimeDiscretization().getNumberOfTimes()-2); int timeIndexNext = timeIndexPrev+1; double timePrev = getTime(timeIndexPrev); double timeNext = getTime(timeIndexNext); RandomVariable discountFactorPrev = getDiscountFactorFromForwardCurve(timeIndexPrev); RandomVariable discountFactorNext = getDiscountFactorFromForwardCurve(timeIndexNext); return discountFactorPrev.mult(discountFactorNext.div(discountFactorPrev).pow((time-timePrev)/(timeNext-timePrev))); } } private RandomVariable getDiscountFactorFromForwardCurve(int timeIndex) { synchronized(discountFactorForForwardCurveCache) { if(discountFactorForForwardCurveCache.size() <= timeIndex+1) { // Initialize cache for(int i=discountFactorForForwardCurveCache.size(); i<=timeIndex; i++) { double df = discountCurveFromForwardCurve.getDiscountFactor(analyticModel, getTime(i)); RandomVariable dfAsRandomVariable = randomVariableFactory.createRandomVariable(df); discountFactorForForwardCurveCache.add(dfAsRandomVariable); } } } return discountFactorForForwardCurveCache.get(timeIndex); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy