All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.interestrate.models.covariance.BlendedLocalVolatilityModel Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 26.05.2013
 */
package net.finmath.montecarlo.interestrate.models.covariance;

import net.finmath.marketdata.model.curves.ForwardCurve;
import net.finmath.montecarlo.AbstractRandomVariableFactory;
import net.finmath.montecarlo.RandomVariableFactory;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;

/**
 * Blended model (or displaced diffusion model) build on top of a standard covariance model.
 *
 * The model constructed for the i-th factor loading is
 * \[
 * 	( a + (1-a) L_{i}(t) ) F_{i}(t) \text{,}
 * \]
 * or
 * \[
 * 	( a L_{i,0} + (1-a) L_{i}(t) ) F_{i}(t) \text{,}
 * \]
 * if an initial forward curve \( i \mapsto L_{i,0} \) is given,
 * where a is the displacement or blending parameter and Li is
 * the realization of the i-th component of the stochastic process and
 * Fi is the factor loading from the given covariance model.
 *
 * If a forward curve is provided, the deterministic value Li,0 is
 * calculated form this curve (using fixing in Ti),
 * otherwise it is replaced by 1.
 *
 * The parameter of this model is a joint parameter vector, consisting
 * of the parameter vector of the given base covariance model and
 * appending the displacement parameter at the end.
 *
 * If this model is not calibrateable, its parameter vector is that of the
 * covariance model, i.e., only the displacement parameter will be not
 * part of the calibration.
 *
 * @author Christian Fries
 * @version 1.0
 */
public class BlendedLocalVolatilityModel extends AbstractLIBORCovarianceModelParametric {

	private static final long serialVersionUID = -5042461187735524974L;

	private AbstractRandomVariableFactory randomVariableFactory;
	private AbstractLIBORCovarianceModelParametric covarianceModel;
	private RandomVariable displacement;

	private ForwardCurve forwardCurve;

	private boolean isCalibrateable = false;

	/**
	 * Displaced diffusion model build on top of a standard covariance model.
	 * The model constructed is (a L0 + (1-a)L) F where a is
	 * the displacement and L is
	 * the component of the stochastic process and F is the factor loading
	 * from the given covariance model.
	 *
	 * The parameter of this model is a joint parameter vector, where the first
	 * entry is the displacement and the remaining entries are the parameter vector
	 * of the given base covariance model.
	 *
	 * If this model is not calibrateable, its parameter vector is that of the
	 * covariance model.
	 *
	 * @param covarianceModel The given covariance model specifying the factor loadings F.
	 * @param forwardCurve The given forward curve L0
	 * @param displacement The displacement a.
	 * @param isCalibrateable If true, the parameter a is a free parameter. Note that the covariance model may have its own parameter calibration settings.
	 */
	public BlendedLocalVolatilityModel(AbstractLIBORCovarianceModelParametric covarianceModel, ForwardCurve forwardCurve, RandomVariable displacement, boolean isCalibrateable) {
		super(covarianceModel.getTimeDiscretization(), covarianceModel.getLiborPeriodDiscretization(), covarianceModel.getNumberOfFactors());

		this.covarianceModel	= covarianceModel;
		this.forwardCurve		= forwardCurve;
		this.displacement		= displacement;
		this.isCalibrateable	= isCalibrateable;
	}

	/**
	 * Displaced diffusion model build on top of a standard covariance model.
	 * The model constructed is (a L0 + (1-a)L) F where a is
	 * the displacement and L is
	 * the component of the stochastic process and F is the factor loading
	 * from the given covariance model.
	 *
	 * The parameter of this model is a joint parameter vector, where the first
	 * entry is the displacement and the remaining entries are the parameter vector
	 * of the given base covariance model.
	 *
	 * If this model is not calibrateable, its parameter vector is that of the
	 * covariance model.
	 *
	 * @param randomVariableFactory The factory used to create RandomVariable objects from constants.
	 * @param covarianceModel The given covariance model specifying the factor loadings F.
	 * @param forwardCurve The given forward curve L0
	 * @param displacement The displacement a.
	 * @param isCalibrateable If true, the parameter a is a free parameter. Note that the covariance model may have its own parameter calibration settings.
	 */
	public BlendedLocalVolatilityModel(AbstractRandomVariableFactory randomVariableFactory, AbstractLIBORCovarianceModelParametric covarianceModel, ForwardCurve forwardCurve, double displacement, boolean isCalibrateable) {
		super(covarianceModel.getTimeDiscretization(), covarianceModel.getLiborPeriodDiscretization(), covarianceModel.getNumberOfFactors());

		this.randomVariableFactory = randomVariableFactory;
		this.covarianceModel	= covarianceModel;
		this.forwardCurve		= forwardCurve;
		this.displacement		= randomVariableFactory.createRandomVariable(displacement);
		this.isCalibrateable	= isCalibrateable;
	}

	/**
	 * Displaced diffusion model build on top of a standard covariance model.
	 *
	 * The model performs a linear interpolation of a log-normal model (a = 0) and a normal model (a = 1).
	 *
	 * The model constructed is (a + (1-a)L) F where a is
	 * the displacement and L is
	 * the component of the stochastic process and F is the factor loading
	 * loading from the given covariance model.
	 *
	 * The parameter of this model is a joint parameter vector, where the first
	 * entry is the displacement and the remaining entries are the parameter vector
	 * of the given base covariance model.
	 *
	 * If this model is not calibrateable, its parameter vector is that of the
	 * covariance model.
	 *
	 * @param randomVariableFactory The factory used to create RandomVariable objects from constants.
	 * @param covarianceModel The given covariance model specifying the factor loadings F.
	 * @param displacement The displacement a.
	 * @param isCalibrateable If true, the parameter a is a free parameter. Note that the covariance model may have its own parameter calibration settings.
	 */
	public BlendedLocalVolatilityModel(AbstractRandomVariableFactory randomVariableFactory, AbstractLIBORCovarianceModelParametric covarianceModel, double displacement, boolean isCalibrateable) {
		this(randomVariableFactory, covarianceModel, null, displacement, isCalibrateable);
	}

	/**
	 * Displaced diffusion model build on top of a standard covariance model.
	 * The model constructed is (a L0 + (1-a)L) F where a is
	 * the displacement and L is
	 * the component of the stochastic process and F is the factor loading
	 * from the given covariance model.
	 *
	 * The parameter of this model is a joint parameter vector, where the first
	 * entry is the displacement and the remaining entries are the parameter vector
	 * of the given base covariance model.
	 *
	 * If this model is not calibrateable, its parameter vector is that of the
	 * covariance model.
	 *
	 * @param covarianceModel The given covariance model specifying the factor loadings F.
	 * @param forwardCurve The given forward curve L0
	 * @param displacement The displacement a.
	 * @param isCalibrateable If true, the parameter a is a free parameter. Note that the covariance model may have its own parameter calibration settings.
	 */
	public BlendedLocalVolatilityModel(AbstractLIBORCovarianceModelParametric covarianceModel, ForwardCurve forwardCurve, double displacement, boolean isCalibrateable) {
		this(new RandomVariableFactory(), covarianceModel, forwardCurve, displacement, isCalibrateable);
	}

	/**
	 * Displaced diffusion model build on top of a standard covariance model.
	 *
	 * The model performs a linear interpolation of a log-normal model (a = 0) and a normal model (a = 1).
	 *
	 * The model constructed is (a + (1-a)L) F where a is
	 * the displacement and L is
	 * the component of the stochastic process and F is the factor loading
	 * loading from the given covariance model.
	 *
	 * The parameter of this model is a joint parameter vector, where the first
	 * entry is the displacement and the remaining entries are the parameter vector
	 * of the given base covariance model.
	 *
	 * If this model is not calibrateable, its parameter vector is that of the
	 * covariance model.
	 *
	 * @param covarianceModel The given covariance model specifying the factor loadings F.
	 * @param displacement The displacement a.
	 * @param isCalibrateable If true, the parameter a is a free parameter. Note that the covariance model may have its own parameter calibration settings.
	 */
	public BlendedLocalVolatilityModel(AbstractLIBORCovarianceModelParametric covarianceModel, double displacement, boolean isCalibrateable) {
		this(new RandomVariableFactory(), covarianceModel, displacement, isCalibrateable);
	}

	@Override
	public Object clone() {
		return new BlendedLocalVolatilityModel(randomVariableFactory, (AbstractLIBORCovarianceModelParametric) covarianceModel.clone(), forwardCurve, displacement.doubleValue(), isCalibrateable);
	}

	/**
	 * Returns the base covariance model, i.e., the model providing the factor loading F
	 * such that this model's i-th factor loading is
	 * 
* (a Li,0 + (1-a)Li(t)) Fi(t) *
* where a is the displacement and Li is * the realization of the i-th component of the stochastic process and * Fi is the factor loading loading from the given covariance model. * * @return The base covariance model. */ public AbstractLIBORCovarianceModelParametric getBaseCovarianceModel() { return covarianceModel; } @Override public RandomVariable[] getParameter() { if(!isCalibrateable) { return covarianceModel.getParameter(); } RandomVariable[] covarianceParameters = covarianceModel.getParameter(); if(covarianceParameters == null) { return new RandomVariable[] { displacement }; } // Append displacement to the end of covarianceParameters RandomVariable[] jointParameters = new RandomVariable[covarianceParameters.length+1]; System.arraycopy(covarianceParameters, 0, jointParameters, 0, covarianceParameters.length); jointParameters[covarianceParameters.length] = displacement; return jointParameters; } @Override public double[] getParameterAsDouble() { RandomVariable[] parameters = getParameter(); double[] parametersAsDouble = new double[parameters.length]; for(int i=0; i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy