net.finmath.montecarlo.interestrate.models.covariance.ShortRateVolatilityModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 24.01.2016
*/
package net.finmath.montecarlo.interestrate.models.covariance;
import java.io.Serializable;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Interface for piecewise constant short rate volatility models with
* piecewise constant instantaneous short rate volatility \( t \mapsto \sigma(t) \)
* and piecewise constant short rate mean reversion speed \( t \mapsto a(t) \).
*
* @author Christian Fries
* @version 1.0
*/
public interface ShortRateVolatilityModel extends Serializable {
/**
* Returns the time discretization \( \{ t_{i} \} \) associated
* with the piecewise constant functions.
*
* @return the time discretization \( \{ t_{i} \} \)
*/
TimeDiscretization getTimeDiscretization();
/**
* Returns the value of \( \sigma(t) \) for \( t_{i} \leq t < t_{i+1} \).
*
* @param timeIndex The index \( i \).
* @return the value of \( \sigma(t) \) for \( t_{i} \leq t < t_{i+1} \)
*/
RandomVariable getVolatility(int timeIndex);
/**
* Returns the value of \( a(t) \) for \( t_{i} \leq t < t_{i+1} \).
*
* @param timeIndex The index \( i \).
* @return the value of \( a(t) \) for \( t_{i} \leq t < t_{i+1} \)
*/
RandomVariable getMeanReversion(int timeIndex);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy