net.finmath.optimizer.StochasticPathwiseOptimizerFactoryLevenbergMarquardt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 29.05.2015
*/
package net.finmath.optimizer;
import net.finmath.optimizer.StochasticOptimizer.ObjectiveFunction;
import net.finmath.stochastic.RandomVariable;
/**
* @author Christian Fries
* @version 1.0
*/
public class StochasticPathwiseOptimizerFactoryLevenbergMarquardt implements StochasticOptimizerFactory {
private final int maxIterations;
private final double errorTolerance;
private final int maxThreads;
public StochasticPathwiseOptimizerFactoryLevenbergMarquardt(int maxIterations, double errorTolerance, int maxThreads) {
super();
this.maxIterations = maxIterations;
this.errorTolerance = errorTolerance;
this.maxThreads = maxThreads;
}
public StochasticPathwiseOptimizerFactoryLevenbergMarquardt(int maxIterations, int maxThreads) {
this(maxIterations, 0.0, maxThreads);
}
@Override
public StochasticOptimizer getOptimizer(final ObjectiveFunction objectiveFunction, final RandomVariable[] initialParameters, RandomVariable[] targetValues) {
return getOptimizer(objectiveFunction, initialParameters, null, null, null, targetValues);
}
@Override
public StochasticOptimizer getOptimizer(final ObjectiveFunction objectiveFunction, final RandomVariable[] initialParameters, final RandomVariable[] lowerBound, final RandomVariable[] upperBound, RandomVariable[] targetValues) {
return getOptimizer(objectiveFunction, initialParameters, lowerBound, upperBound, null, targetValues);
}
@Override
public StochasticOptimizer getOptimizer(final ObjectiveFunction objectiveFunction, RandomVariable[] initialParameters, RandomVariable[] lowerBound, RandomVariable[] upperBound, RandomVariable[] parameterSteps, RandomVariable[] targetValues) {
return
new StochasticPathwiseLevenbergMarquardt(initialParameters, targetValues, null /* weights */, parameterSteps, maxIterations, null, null)
{
private static final long serialVersionUID = -7050719719557572792L;
@Override
public void setValues(RandomVariable[] parameters, RandomVariable[] values) throws SolverException {
objectiveFunction.setValues(parameters, values);
}
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy