net.finmath.timeseries.models.parametric.ARMAGARCH Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 15.07.2012
*/
package net.finmath.timeseries.models.parametric;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.optim.SimplePointChecker;
import org.apache.commons.math3.random.MersenneTwister;
import net.finmath.optimizer.LevenbergMarquardt;
import net.finmath.optimizer.SolverException;
import net.finmath.timeseries.HistoricalSimulationModel;
import net.finmath.timeseries.TimeSeries;
import net.finmath.timeseries.TimeSeriesModelParametric;
import net.finmath.timeseries.TimeSeriesView;
/**
* Lognormal process with ARMAGARCH(1,1) volatility.
*
* This class estimates the process
* \[
* \mathrm{d} \log(X) = \sigma(t) \mathrm{d}W(t)
* \]
* where \( \sigma \) is given by a ARMAGARCH(1,1) process.
*
* @author Christian Fries
* @version 1.0
*/
public class ARMAGARCH implements TimeSeriesModelParametric, HistoricalSimulationModel {
private TimeSeries timeSeries;
private int maxIterations = 10000000;
/*
* Model properties
*/
private final String[] parameterNames = new String[] { "omega", "alpha", "beta", "theta", "mu", "phi" };
private final double[] parameterGuess = new double[] { 0.10, 0.3, 0.3, 0.0, 0.0, 0.0 };
private final double[] parameterStep = new double[] { 0.001, 0.001, 0.001, 0.001, 0.0001, 0.001 };
private final double[] lowerBound;
private final double[] upperBound;
public ARMAGARCH(TimeSeries timeSeries) {
this.timeSeries = timeSeries;
lowerBound = new double[] { 0, 0, 0, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY };
upperBound = new double[] { Double.POSITIVE_INFINITY, 1, 1, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY };
}
/**
* @param parameters Given model parameters.
* @return The log likelihood for the given model parameters.
*/
public double getLogLikelihoodForParameters(double[] parameters)
{
double omega = parameters[0];
double alpha = parameters[1];
double beta = parameters[2];
double theta = parameters[3];
double mu = parameters[4];
double phi = parameters[5];
double logLikelihood = 0.0;
double volScaling = 1;
double evalPrev = 0.0;
double eval = volScaling * (Math.log((timeSeries.getValue(1))/(timeSeries.getValue(0))));
if(Double.isInfinite(eval) || Double.isNaN(eval)) {
eval = 0;
}
double h = omega / (1.0 - alpha - beta);
double m = 0.0; // xxx how to init?
logLikelihood += - Math.log(h) - 2 * Math.log((Math.abs(timeSeries.getValue(1)))/volScaling) - eval*eval / h;
int length = timeSeries.getNumberOfTimePoints();
for (int i = 1; i < length-1; i++) {
m = -mu -theta * m + eval - phi * evalPrev;
h = (omega + alpha * m * m) + beta * h;
double value1 = timeSeries.getValue(i);
double value2 = timeSeries.getValue(i+1);
double evalNext = volScaling * (Math.log((value2)/(value1)));
if(Double.isInfinite(evalNext) || Double.isNaN(evalNext)) {
evalNext = 0;
}
double mNext = -mu - theta * m + evalNext - phi * eval;
// We need to take abs here, which corresponds to the assumption that -x is lognormal, given that we encounter a negative values.
logLikelihood += - Math.log(h) - 2 * Math.log((Math.abs(value2))/volScaling) - mNext* mNext / h;
evalPrev = eval;
eval = evalNext;
}
logLikelihood += - Math.log(2 * Math.PI) * (length-1);
logLikelihood *= 0.5;
return logLikelihood;
}
public double getLastResidualForParameters(double[] parameters) {
double omega = parameters[0];
double alpha = parameters[1];
double beta = parameters[2];
double theta = parameters[3];
double mu = parameters[4];
double phi = parameters[5];
double evalPrev = 0.0;
double volScaling = 1;
double h = omega / (1.0 - alpha - beta);
double m = 0.0; // xxx how to init?
int length = timeSeries.getNumberOfTimePoints();
for (int i = 1; i < length-1; i++) {
double eval = volScaling * (Math.log((timeSeries.getValue(i))/(timeSeries.getValue(i-1))));
if(Double.isInfinite(eval) || Double.isNaN(eval)) {
eval = 0;
}
m = -mu -theta * m + eval - phi * evalPrev;
h = (omega + alpha * m * m) + beta * h;
evalPrev = eval;
}
return h;
}
public double[] getSzenarios(double[] parameters) {
double omega = parameters[0];
double alpha = parameters[1];
double beta = parameters[2];
double theta = parameters[3];
double mu = parameters[4];
double phi = parameters[5];
ArrayList szenarios = new ArrayList<>();
double volScaling = 1;
double evalPrev = 0.0;
double h = omega / (1.0 - alpha - beta);
double m = 0.0;
double vol = Math.sqrt(h) / volScaling;
for (int i = 1; i <= timeSeries.getNumberOfTimePoints()-1; i++) {
double y = Math.log((timeSeries.getValue(i))/(timeSeries.getValue(i-1)));
if(Double.isInfinite(y) || Double.isNaN(y)) {
y = 0;
}
// y = sqrt(h) * eps + sqrt(h_prev) epsprev + mu yprev
// h = omega + alpha y^2 + beta h
double eval = volScaling * y;
m = -mu -theta * m + eval - phi * evalPrev;
double value = (m / volScaling) / vol;
szenarios.add(value);
h = (omega + alpha * m * m) + beta * h;
vol = Math.sqrt(h) / volScaling;
evalPrev = eval;
}
Collections.sort(szenarios);
// Get szenarios on current vol
double[] szenariosArray = new double[szenarios.size()];
for(int i=0; i 0) {
szenarioRelativeChange = Math.exp(
(
(quantileIndexHi-quantileIndex) * szenarios[Math.max(quantileIndexLo,0 )]
+ (quantileIndex-quantileIndexLo) * szenarios[Math.min(quantileIndexHi,szenarios.length-1)]
));
}
else {
szenarioRelativeChange = 1.0;
}
double quantileValue = (timeSeries.getValue(timeSeries.getNumberOfTimePoints()-1)) * szenarioRelativeChange;
quantileValues[i] = quantileValue;
}
return quantileValues;
}
/* (non-Javadoc)
* @see net.finmath.timeseries.HistoricalSimulationModel#getBestParameters()
*/
@Override
public Map getBestParameters() {
return getBestParameters(null);
}
/* (non-Javadoc)
* @see net.finmath.timeseries.HistoricalSimulationModel#getBestParameters(java.util.Map)
*/
@Override
public Map getBestParameters(Map guess) {
// Create the objective function for the solver
class GARCHMaxLikelihoodFunction implements MultivariateFunction, Serializable {
private static final long serialVersionUID = 7072187082052755854L;
@Override
public double value(double[] variables) {
double omega = variables[0];
double alpha = variables[1];
double beta = variables[2];
double theta = variables[3];
double mu = variables[4];
double phi = variables[5];
double logLikelihood = getLogLikelihoodForParameters(variables);
// Penalty to prevent solver from hitting the bounds
logLikelihood -= Math.max(1E-30-omega,0)/1E-30;
logLikelihood -= Math.max(1E-30-alpha,0)/1E-30;
logLikelihood -= Math.max((alpha-1)+1E-30,0)/1E-30;
logLikelihood -= Math.max(1E-30-beta,0)/1E-30;
logLikelihood -= Math.max((beta-1)+1E-30,0)/1E-30;
return logLikelihood;
}
}
final GARCHMaxLikelihoodFunction objectiveFunction = new GARCHMaxLikelihoodFunction();
// Create a guess for the solver
final double[] guessParameters = new double[parameterGuess.length];
System.arraycopy(parameterGuess, 0, guessParameters, 0, parameterGuess.length);
if(guess != null) {
// A guess was provided, use that one
guessParameters[0] = (Double)guess.get("Omega");
guessParameters[1] = (Double)guess.get("Alpha");
guessParameters[2] = (Double)guess.get("Beta");
guessParameters[3] = (Double)guess.get("Theta");
guessParameters[4] = (Double)guess.get("Mu");
guessParameters[5] = (Double)guess.get("Phi");
}
// Seek optimal parameter configuration
LevenbergMarquardt lm = new LevenbergMarquardt(guessParameters, new double[] { 1000.0 }, 100*maxIterations, 2) {
private static final long serialVersionUID = -8844232820888815090L;
@Override
public void setValues(double[] parameters, double[] values) {
values[0] = objectiveFunction.value(parameters);
}
};
double[] bestParameters = null;
boolean isUseLM = false;
if(isUseLM) {
try {
lm.run();
} catch (SolverException e1) {
// TODO Auto-generated catch block
e1.printStackTrace();
}
bestParameters = lm.getBestFitParameters();
}
else {
org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer optimizer2 = new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer(maxIterations, Double.POSITIVE_INFINITY, true, 0, 0, new MersenneTwister(3141), false, new SimplePointChecker(0, 0))
{
@Override
public double computeObjectiveValue(double[] params) {
return objectiveFunction.value(params);
}
/* (non-Javadoc)
* @see org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer#getGoalType()
*/
@Override
public org.apache.commons.math3.optim.nonlinear.scalar.GoalType getGoalType() {
// TODO Auto-generated method stub
return org.apache.commons.math3.optim.nonlinear.scalar.GoalType.MAXIMIZE;
}
/* (non-Javadoc)
* @see org.apache.commons.math3.optim.BaseMultivariateOptimizer#getStartPoint()
*/
@Override
public double[] getStartPoint() {
return guessParameters;
}
/* (non-Javadoc)
* @see org.apache.commons.math3.optim.BaseMultivariateOptimizer#getLowerBound()
*/
@Override
public double[] getLowerBound() {
return lowerBound;
}
/* (non-Javadoc)
* @see org.apache.commons.math3.optim.BaseMultivariateOptimizer#getUpperBound()
*/
@Override
public double[] getUpperBound() {
return upperBound;
}
};
try {
org.apache.commons.math3.optim.PointValuePair result = optimizer2.optimize(
new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer.PopulationSize((int) (4 + 3 * Math.log(guessParameters.length))),
new org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer.Sigma(parameterStep)
);
bestParameters = result.getPoint();
} catch(org.apache.commons.math3.exception.MathIllegalStateException e) {
System.out.println("Solver failed");
bestParameters = guessParameters;
}
}
// Transform parameters to GARCH parameters
double omega = bestParameters[0];
double alpha = bestParameters[1];
double beta = bestParameters[2];
double theta = bestParameters[3];
double mu = bestParameters[4];
double phi = bestParameters[5];
double[] quantiles = {0.005, 0.01, 0.02, 0.05, 0.5};
double[] quantileValues = getQuantilPredictionsForParameters(bestParameters, quantiles);
Map results = new HashMap<>();
results.put("parameters", bestParameters);
results.put("Omega", omega);
results.put("Alpha", alpha);
results.put("Beta", beta);
results.put("Theta", theta);
results.put("Mu", mu);
results.put("Phi", phi);
results.put("Szenarios", this.getSzenarios(bestParameters));
results.put("Likelihood", this.getLogLikelihoodForParameters(bestParameters));
results.put("Vol", Math.sqrt(this.getLastResidualForParameters(bestParameters)));
results.put("Quantile=05%", quantileValues[0]);
results.put("Quantile=1%", quantileValues[1]);
results.put("Quantile=2%", quantileValues[2]);
results.put("Quantile=5%", quantileValues[3]);
results.put("Quantile=50%", quantileValues[4]);
return results;
}
private static double restrictToOpenSet(double value, double lowerBond, double upperBound) {
value = Math.max(value, lowerBond * (1.0+Math.signum(lowerBond)*1E-15) + 1E-15);
value = Math.min(value, upperBound * (1.0-Math.signum(upperBound)*1E-15) - 1E-15);
return value;
}
@Override
public TimeSeriesModelParametric getCloneCalibrated(TimeSeries timeSeries) {
return new ARMAGARCH(timeSeries);
}
@Override
public HistoricalSimulationModel getCloneWithWindow(int windowIndexStart, int windowIndexEnd) {
return new ARMAGARCH(new TimeSeriesView(timeSeries, windowIndexStart, windowIndexEnd));
}
@Override
public double[] getParameters() {
return (double[])getBestParameters().get("parameters");
}
@Override
public String[] getParameterNames() {
return parameterNames;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy