net.finmath.integration.SimpsonRealIntegrator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
package net.finmath.integration;
import java.util.function.DoubleUnaryOperator;
import java.util.stream.IntStream;
/**
* A simple integrator using Simpson's rule.
*
* The constructor has an optional argument to allow
* parallel function evaluation. In that case, the integration rule
* uses Java 8 parallel streams to evaluate.
*
* @author Christian Fries
* @version 1.0
*/
public class SimpsonRealIntegrator extends AbstractRealIntegral{
private int numberOfEvaluationPoints;
private boolean useParallelEvaluation = false;
/**
* Create an integrator using Simpson's rule.
*
* @param lowerBound Lower bound of the integral.
* @param upperBound Upper bound of the integral.
* @param numberOfEvaluationPoints Maximum number of evaluation points to be used, must be greater or equal to 3.
* @param useParallelEvaluation If true, the integration rule will perform parallel evaluation of the integrand.
*/
public SimpsonRealIntegrator(double lowerBound, double upperBound, int numberOfEvaluationPoints, boolean useParallelEvaluation) {
super(lowerBound, upperBound);
if(numberOfEvaluationPoints < 3) {
throw new IllegalArgumentException("Invalid numberOfEvaluationPoints.");
}
this.numberOfEvaluationPoints = numberOfEvaluationPoints;
this.useParallelEvaluation = useParallelEvaluation;
}
/**
* Create an integrator using Simpson's rule.
*
* @param lowerBound Lower bound of the integral.
* @param upperBound Upper bound of the integral.
* @param numberOfEvaluationPoints Maximum number of evaluation points to be used.
*/
public SimpsonRealIntegrator(double lowerBound, double upperBound, int numberOfEvaluationPoints) {
this(lowerBound, upperBound, numberOfEvaluationPoints, false);
}
/* (non-Javadoc)
* @see net.finmath.integration.AbstractRealIntegral#integrate(java.util.function.DoubleUnaryOperator)
*/
@Override
public double integrate(DoubleUnaryOperator integrand) {
double lowerBound = getLowerBound();
double upperBound = getUpperBound();
double range = upperBound-lowerBound;
int numberOfIntervalls = (int) ((numberOfEvaluationPoints-1) / 2.0);
double fullIntervall = range / numberOfIntervalls;
double halfIntervall = 0.5 * fullIntervall;
IntStream intervals = IntStream.range(1, numberOfIntervalls);
if(useParallelEvaluation) {
intervals = intervals.parallel();
}
double sum = intervals.mapToDouble(
i -> 2 * integrand.applyAsDouble(lowerBound + i * fullIntervall + halfIntervall) + integrand.applyAsDouble(lowerBound + i * fullIntervall)
).sum();
sum += 2.0 * integrand.applyAsDouble(lowerBound + halfIntervall);
return (integrand.applyAsDouble(lowerBound) + integrand.applyAsDouble(upperBound) + 2.0 * sum) / 6.0 * fullIntervall;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy