net.finmath.montecarlo.RandomVariableLazyEvaluation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 09.02.2006
*/
package net.finmath.montecarlo;
import java.util.Arrays;
import java.util.function.DoubleBinaryOperator;
import java.util.function.DoubleUnaryOperator;
import java.util.function.IntToDoubleFunction;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import org.apache.commons.math3.util.FastMath;
import net.finmath.functions.DoubleTernaryOperator;
import net.finmath.stochastic.RandomVariable;
/**
* Implements a Monte-Carlo random variable (like RandomVariableFromDoubleArray
using
* late evaluation of Java 8 streams
*
* Accesses performed exclusively through the interface
* RandomVariable
is thread safe (and does not mutate the class).
*
* The implementation require Java 8 or better.
*
* @TODO The implementation of getAverage does not use a Kahan summation, while RandomVariableFromDoubleArray
does.
*
* @author Christian Fries
* @author OSC
* @version 2.0
*/
public class RandomVariableLazyEvaluation implements RandomVariable {
/**
*
*/
private static final long serialVersionUID = 8413020544732461630L;
private final double time; // Time (filtration)
// Operator
private IntToDoubleFunction realizations;
private final int size;
// Data model for the non-stochastic case (if realizations==null)
private final double valueIfNonStochastic;
private transient double[] realizationsArray = null;
/**
* Create a random variable from a given other implementation of RandomVariable
.
*
* @param value Object implementing RandomVariable
.
*/
public RandomVariableLazyEvaluation(RandomVariable value) {
super();
time = value.getFiltrationTime();
realizations = value.isDeterministic() ? null : value::get;
size = value.size();
valueIfNonStochastic = value.isDeterministic() ? value.get(0) : Double.NaN;
}
/**
* Create a non stochastic random variable, i.e. a constant.
*
* @param value the value, a constant.
*/
public RandomVariableLazyEvaluation(double value) {
this(0.0, value);
}
/**
* Create a random variable by applying a function to a given other implementation of RandomVariable
.
*
* @param value Object implementing RandomVariable
.
* @param function A function mapping double to double.
*/
public RandomVariableLazyEvaluation(RandomVariable value, DoubleUnaryOperator function) {
super();
time = value.getFiltrationTime();
realizations = value.isDeterministic() ? null : i -> function.applyAsDouble(value.get(i));
size = value.size();
valueIfNonStochastic = value.isDeterministic() ? function.applyAsDouble(value.get(0)) : Double.NaN;
}
/**
* Create a non stochastic random variable, i.e. a constant.
*
* @param time the filtration time, set to 0.0 if not used.
* @param value the value, a constant.
*/
public RandomVariableLazyEvaluation(double time, double value) {
super();
this.time = time;
realizations = null;
size = 1;
valueIfNonStochastic = value;
}
/**
* Create a non stochastic random variable, i.e. a constant.
*
* @param time the filtration time, set to 0.0 if not used.
* @param numberOfPath The number of path/state of the associated Monte-Carlo simulation or lattice.
* @param value the value, a constant.
*/
public RandomVariableLazyEvaluation(double time, int numberOfPath, double value) {
super();
this.time = time;
size = numberOfPath;
realizations = i -> value;
valueIfNonStochastic = Double.NaN;
}
/**
* Create a stochastic random variable.
*
* @param time the filtration time, set to 0.0 if not used.
* @param realisations the vector of realizations.
*/
public RandomVariableLazyEvaluation(double time, double[] realisations) {
super();
this.time = time;
size = realisations.length;
realizations = i->realisations[i];
valueIfNonStochastic = Double.NaN;
realizationsArray = realisations;
}
/**
* Create a stochastic random variable.
*
* @param time the filtration time, set to 0.0 if not used.
* @param realisations the vector of realizations.
* @param size The number of path/state of the associated Monte-Carlo simulation or lattice.
*/
public RandomVariableLazyEvaluation(double time, IntToDoubleFunction realisations, int size) {
super();
this.time = time;
realizations = realisations;
this.size = size;
valueIfNonStochastic = Double.NaN;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#equals(net.finmath.montecarlo.RandomVariableFromDoubleArray)
*/
@Override
public boolean equals(RandomVariable randomVariable) {
if(time != randomVariable.getFiltrationTime()) {
return false;
}
if(this.isDeterministic() && randomVariable.isDeterministic()) {
return valueIfNonStochastic == randomVariable.get(0);
}
if(this.isDeterministic() != randomVariable.isDeterministic()) {
return false;
}
for(int i=0; i quantileEnd) {
return getQuantileExpectation(quantileEnd, quantileStart);
}
double[] realizationsSorted = getRealizations().clone();
Arrays.sort(realizationsSorted);
int indexOfQuantileValueStart = Math.min(Math.max((int)Math.round((size()+1) * quantileStart - 1), 0), size()-1);
int indexOfQuantileValueEnd = Math.min(Math.max((int)Math.round((size()+1) * quantileEnd - 1), 0), size()-1);
double quantileExpectation = 0.0;
for (int i=indexOfQuantileValueStart; i<=indexOfQuantileValueEnd;i++) {
quantileExpectation += realizationsSorted[i];
}
quantileExpectation /= indexOfQuantileValueEnd-indexOfQuantileValueStart+1;
return quantileExpectation;
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#getHistogram()
*/
@Override
public double[] getHistogram(double[] intervalPoints)
{
double[] histogramValues = new double[intervalPoints.length+1];
if(isDeterministic()) {
/*
* If the random variable is deterministic we will return an array
* consisting of 0's and one and only one 1.
*/
Arrays.fill(histogramValues, 0.0);
for (int intervalIndex=0; intervalIndex intervalPoints[intervalIndex]) {
histogramValues[intervalIndex] = 1.0;
break;
}
}
histogramValues[intervalPoints.length] = 1.0;
}
else {
/*
* If the random variable is deterministic we will return an array
* representing a density, where the sum of the entries is one.
* There is one exception:
* If the size of the random variable is 0, all entries will be zero.
*/
double[] realizationsSorted = getRealizations().clone();
Arrays.sort(realizationsSorted);
int sampleIndex=0;
for (int intervalIndex=0; intervalIndex 0) {
for(int i=0; i valueIfNonStochastic);
}
else {
return IntStream.range(0,size()).mapToDouble(realizations).parallel();
}
}
@Override
public RandomVariable apply(DoubleUnaryOperator operator) {
if(isDeterministic()) {
return new RandomVariableLazyEvaluation(time, operator.applyAsDouble(valueIfNonStochastic));
}
else
{
IntToDoubleFunction newRealizations = i -> operator.applyAsDouble(realizations.applyAsDouble(i));
return new RandomVariableLazyEvaluation(time, newRealizations, size());
}
}
@Override
public RandomVariable cache() {
synchronized (this)
{
if(realizationsArray == null) {
realizationsArray = getRealizationsStream().toArray();
realizations = i -> realizationsArray[i];
}
}
return this;
}
@Override
public RandomVariable apply(DoubleBinaryOperator operator, final RandomVariable argument) {
double newTime = Math.max(time, argument.getFiltrationTime());
if(isDeterministic() && argument.isDeterministic()) {
return new RandomVariableLazyEvaluation(newTime, operator.applyAsDouble(valueIfNonStochastic, argument.get(0)));
}
else if(!isDeterministic() && argument.isDeterministic()) {
IntToDoubleFunction newRealizations = i -> operator.applyAsDouble(realizations.applyAsDouble(i), argument.get(0));
return new RandomVariableLazyEvaluation(newTime, newRealizations, size());
}
else if(isDeterministic() && !argument.isDeterministic()) {
if(false) {
final IntToDoubleFunction argumentRealizations = argument.getOperator();
IntToDoubleFunction newRealizations = i -> operator.applyAsDouble(valueIfNonStochastic, argumentRealizations.applyAsDouble(i));
return new RandomVariableLazyEvaluation(newTime, newRealizations, argument.size());
}
else {
final double[] argumentRealizations = argument.getRealizations();
IntToDoubleFunction newRealizations = i -> operator.applyAsDouble(valueIfNonStochastic, argumentRealizations[i]);
return new RandomVariableLazyEvaluation(newTime, newRealizations, argument.size());
}
}
else
{
if(false) {
final IntToDoubleFunction argumentRealizations = argument.getOperator();
IntToDoubleFunction newRealizations = i -> operator.applyAsDouble(realizations.applyAsDouble(i), argumentRealizations.applyAsDouble(i));
return new RandomVariableLazyEvaluation(newTime, newRealizations, size());
}
else {
final double[] argumentRealizations = argument.getRealizations();
IntToDoubleFunction newRealizations = i -> operator.applyAsDouble(realizations.applyAsDouble(i), argumentRealizations[i]);
return new RandomVariableLazyEvaluation(newTime, newRealizations, size());
}
}
}
public RandomVariable apply(DoubleBinaryOperator operatorOuter, DoubleBinaryOperator operatorInner, RandomVariable argument1, RandomVariable argument2)
{
double newTime = Math.max(time, argument1.getFiltrationTime());
newTime = Math.max(newTime, argument2.getFiltrationTime());
if(this.isDeterministic() && argument1.isDeterministic() && argument2.isDeterministic()) {
return new RandomVariableLazyEvaluation(newTime, operatorOuter.applyAsDouble(valueIfNonStochastic, operatorInner.applyAsDouble(argument1.get(0), argument2.get(0))));
}
else {
int newSize = Math.max(Math.max(this.size(), argument1.size()), argument2.size());
if(false) {
if(argument1.isDeterministic() && argument2.isDeterministic()) {
final double argument1Realization = argument1.get(0);
final double argument2Realization = argument2.get(0);
final double innerResult = operatorInner.applyAsDouble(argument1Realization, argument2Realization);
return new RandomVariableLazyEvaluation(newTime,(int i) -> operatorOuter.applyAsDouble(realizations.applyAsDouble(i), innerResult), newSize);
}
else {
return new RandomVariableLazyEvaluation(newTime,(int i) -> operatorOuter.applyAsDouble(realizations.applyAsDouble(i), operatorInner.applyAsDouble(argument1.get(i), argument2.get(i))), newSize);
}
}
else {
IntToDoubleFunction innerResult;
if(argument1.isDeterministic() && argument2.isDeterministic()) {
final double argument1Realization = argument1.get(0);
final double argument2Realization = argument2.get(0);
innerResult = i -> operatorInner.applyAsDouble(argument1Realization, argument2Realization);
}
else if(argument1.isDeterministic() && !argument2.isDeterministic()) {
final double argument1Realization = argument1.get(0);
final double[] argument2Realizations = argument2.getRealizations();
innerResult = i -> operatorInner.applyAsDouble(argument1Realization, argument2Realizations[i]);
}
else if(!argument1.isDeterministic() && argument2.isDeterministic()) {
final double[] argument1Realizations = argument1.getRealizations();
final double argument2Realization = argument2.get(0);
innerResult = i -> operatorInner.applyAsDouble(argument1Realizations[i], argument2Realization);
}
else {// if(!argument1.isDeterministic() && !argument2.isDeterministic()) {
final double[] argument1Realizations = argument1.getRealizations();
final double[] argument2Realizations = argument2.getRealizations();
innerResult = i -> operatorInner.applyAsDouble(argument1Realizations[i], argument2Realizations[i]);
}
if(isDeterministic()) {
return new RandomVariableLazyEvaluation(newTime,(int i) -> operatorOuter.applyAsDouble(valueIfNonStochastic, innerResult.applyAsDouble(i)), newSize);
}
else {
return new RandomVariableLazyEvaluation(newTime,(int i) -> operatorOuter.applyAsDouble(realizations.applyAsDouble(i), innerResult.applyAsDouble(i)), newSize);
}
}
}
}
@Override
public RandomVariable apply(DoubleTernaryOperator operator, RandomVariable argument1, RandomVariable argument2)
{
double newTime = Math.max(time, argument1.getFiltrationTime());
newTime = Math.max(newTime, argument2.getFiltrationTime());
if(this.isDeterministic() && argument1.isDeterministic() && argument2.isDeterministic()) {
return new RandomVariableLazyEvaluation(newTime, operator.applyAsDouble(valueIfNonStochastic, argument1.get(0), argument2.get(0)));
}
else {
int newSize = Math.max(Math.max(this.size(), argument1.size()), argument2.size());
IntToDoubleFunction result;
if(argument1.isDeterministic() && argument2.isDeterministic()) {
final double argument1Realization = argument1.get(0);
final double argument2Realization = argument2.get(0);
if(isDeterministic()) {
result = i -> operator.applyAsDouble(valueIfNonStochastic, argument1Realization, argument2Realization);
}
else {
result = i -> operator.applyAsDouble(realizations.applyAsDouble(i), argument1Realization, argument2Realization);
}
}
else if(argument1.isDeterministic() && !argument2.isDeterministic()) {
final double argument1Realization = argument1.get(0);
final double[] argument2Realizations = argument2.getRealizations();
if(isDeterministic()) {
result = i -> operator.applyAsDouble(valueIfNonStochastic, argument1Realization, argument2Realizations[i]);
}
else {
result = i -> operator.applyAsDouble(realizations.applyAsDouble(i), argument1Realization, argument2Realizations[i]);
}
}
else if(!argument1.isDeterministic() && argument2.isDeterministic()) {
final double[] argument1Realizations = argument1.getRealizations();
final double argument2Realization = argument2.get(0);
if(isDeterministic()) {
result = i -> operator.applyAsDouble(valueIfNonStochastic, argument1Realizations[i], argument2Realization);
}
else {
result = i -> operator.applyAsDouble(realizations.applyAsDouble(i), argument1Realizations[i], argument2Realization);
}
}
else {// if(!argument1.isDeterministic() && !argument2.isDeterministic()) {
final double[] argument1Realizations = argument1.getRealizations();
final double[] argument2Realizations = argument2.getRealizations();
if(isDeterministic()) {
result = i -> operator.applyAsDouble(valueIfNonStochastic, argument1Realizations[i], argument2Realizations[i]);
}
else {
result = i -> operator.applyAsDouble(realizations.applyAsDouble(i), argument1Realizations[i], argument2Realizations[i]);
}
}
return new RandomVariableLazyEvaluation(newTime, result, newSize);
}
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#cap(double)
*/
@Override
public RandomVariable cap(double cap) {
return apply(x -> Math.min(x, cap));
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#floor(double)
*/
@Override
public RandomVariable floor(double floor) {
return apply(x -> Math.max(x, floor));
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#add(double)
*/
@Override
public RandomVariable add(double value) {
return apply(x -> x + value);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#sub(double)
*/
@Override
public RandomVariable sub(double value) {
return apply(x -> x - value);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#mult(double)
*/
@Override
public RandomVariable mult(double value) {
return apply(x -> x * value);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#div(double)
*/
@Override
public RandomVariable div(double value) {
return apply(x -> x / value);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#pow(double)
*/
@Override
public RandomVariable pow(double exponent) {
return apply(x -> FastMath.pow(x, exponent));
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#average()
*/
@Override
public RandomVariable average() {
return new RandomVariableLazyEvaluation(getAverage());
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#squared()
*/
@Override
public RandomVariable squared() {
return apply(x -> x * x);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#sqrt()
*/
@Override
public RandomVariable sqrt() {
return apply(FastMath::sqrt);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#exp()
*/
@Override
public RandomVariable exp() {
return apply(FastMath::exp);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#log()
*/
@Override
public RandomVariable log() {
return apply(FastMath::log);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#sin()
*/
@Override
public RandomVariable sin() {
return apply(FastMath::sin);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#cos()
*/
@Override
public RandomVariable cos() {
return apply(FastMath::cos);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#add(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable add(RandomVariable randomVariable) {
return apply((x, y) -> x + y, randomVariable);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#sub(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable sub(RandomVariable randomVariable) {
return apply((x, y) -> x - y, randomVariable);
}
@Override
public RandomVariable bus(RandomVariable randomVariable) {
return apply((x, y) -> -x + y, randomVariable);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#mult(net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable mult(RandomVariable randomVariable) {
return apply((x, y) -> x * y, randomVariable);
}
@Override
public RandomVariable div(RandomVariable randomVariable) {
return apply((x, y) -> x / y, randomVariable);
}
@Override
public RandomVariable vid(RandomVariable randomVariable) {
return apply((x, y) -> y / x, randomVariable);
}
@Override
public RandomVariable cap(RandomVariable cap) {
return apply(FastMath::min, cap);
}
@Override
public RandomVariable floor(RandomVariable floor) {
return apply(FastMath::max, floor);
}
@Override
public RandomVariable accrue(RandomVariable rate, double periodLength) {
return apply((x, y) -> x * (1.0 + y * periodLength), rate);
}
@Override
public RandomVariable discount(RandomVariable rate, double periodLength) {
return apply((x, y) -> x / (1.0 + y * periodLength), rate);
}
@Override
public RandomVariable choose(RandomVariable valueIfTriggerNonNegative, RandomVariable valueIfTriggerNegative) {
return apply(( x, y, z) -> (x >= 0 ? y : z), valueIfTriggerNonNegative, valueIfTriggerNegative);
}
@Override
public RandomVariable invert() {
return apply(x -> 1.0 / x);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#abs()
*/
@Override
public RandomVariable abs() {
return apply(Math::abs);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#addProduct(net.finmath.stochastic.RandomVariable, double)
*/
@Override
public RandomVariable addProduct(final RandomVariable factor1, final double factor2) {
return apply((x, y) -> x + y * factor2, factor1);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#addProduct(net.finmath.stochastic.RandomVariable, net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable addProduct(RandomVariable factor1, RandomVariable factor2) {
return apply((x,y) -> x + y, (x, y) -> x * y, factor1, factor2);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#addRatio(net.finmath.stochastic.RandomVariable, net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable addRatio(RandomVariable numerator, RandomVariable denominator) {
return apply((x, y) -> x + y, (x, y) -> x / y, numerator, denominator);
}
/* (non-Javadoc)
* @see net.finmath.stochastic.RandomVariable#subRatio(net.finmath.stochastic.RandomVariable, net.finmath.stochastic.RandomVariable)
*/
@Override
public RandomVariable subRatio(RandomVariable numerator, RandomVariable denominator) {
return apply((x,y) -> x - y, (x, y) -> x / y, numerator, denominator);
}
@Override
public RandomVariable isNaN() {
if(isDeterministic()) {
return new RandomVariableLazyEvaluation(time, Double.isNaN(valueIfNonStochastic) ? 1.0 : 0.0);
}
else {
double[] newRealizations = new double[size()];
for(int i=0; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy