net.finmath.montecarlo.assetderivativevaluation.MonteCarloMertonModel Maven / Gradle / Ivy
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 20.01.2004
*/
package net.finmath.montecarlo.assetderivativevaluation;
import java.time.LocalDateTime;
import java.util.HashMap;
import java.util.Map;
import java.util.function.DoubleUnaryOperator;
import java.util.function.IntFunction;
import net.finmath.exception.CalculationException;
import net.finmath.functions.NormalDistribution;
import net.finmath.functions.PoissonDistribution;
import net.finmath.montecarlo.IndependentIncrements;
import net.finmath.montecarlo.IndependentIncrementsFromICDF;
import net.finmath.montecarlo.assetderivativevaluation.models.MertonModel;
import net.finmath.montecarlo.process.EulerSchemeFromProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcessFromProcessModel;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* This class glues together a MertonModel
and a Monte-Carlo implementation of a MonteCarloProcessFromProcessModel
, namely EulerSchemeFromProcessModel
,
* and forms a Monte-Carlo implementation of the Merton model by implementing AssetModelMonteCarloSimulationModel
.
*
* The model is
* \[
* dS = \mu S dt + \sigma S dW + S dJ, \quad S(0) = S_{0},
* \]
* \[
* dN = r N dt, \quad N(0) = N_{0},
* \]
* where \( W \) is Brownian motion and \( J \) is a jump process (compound Poisson process).
*
* The process \( J \) is given by \( J(t) = \sum_{i=1}^{N(t)} (Y_{i}-1) \), where
* \( \log(Y_{i}) \) are i.i.d. normals with mean \( a - \frac{1}{2} b^{2} \) and standard deviation \( b \).
* Here \( a \) is the jump size mean and \( b \) is the jump size std. dev.
*
* For details on the construction of the model see {@link net.finmath.montecarlo.assetderivativevaluation.models.MertonModel}.
*
* @author Christian Fries
* @see net.finmath.montecarlo.assetderivativevaluation.models.MertonModel
* @see net.finmath.montecarlo.process.MonteCarloProcess The interface for numerical schemes.
* @see net.finmath.montecarlo.model.ProcessModel The interface for models provinding parameters to numerical schemes.
* @version 1.0
*/
public class MonteCarloMertonModel implements AssetModelMonteCarloSimulationModel {
private final MertonModel model;
private final double initialValue;
private final int seed;
/**
* Create a Monte-Carlo simulation using given time discretization and given parameters.
*
* @param timeDiscretization The time discretization.
* @param numberOfPaths The number of Monte-Carlo path to be used.
* @param seed The seed used for the random number generator.
* @param initialValue Spot value.
* @param riskFreeRate The risk free rate.
* @param volatility The log volatility.
* @param jumpIntensity The intensity parameter lambda of the compound Poisson process.
* @param jumpSizeMean The mean jump size of the normal distributes jump sizes of the compound Poisson process.
* @param jumpSizeStDev The standard deviation of the normal distributes jump sizes of the compound Poisson process.
*/
public MonteCarloMertonModel(
final TimeDiscretization timeDiscretization,
final int numberOfPaths,
final int seed,
final double initialValue,
final double riskFreeRate,
final double volatility,
final double jumpIntensity,
final double jumpSizeMean,
final double jumpSizeStDev
) {
super();
this.initialValue = initialValue;
this.seed = seed;
// Create the model
model = new MertonModel(initialValue, riskFreeRate, volatility, jumpIntensity, jumpSizeMean, jumpSizeStDev);
IntFunction> inverseCumulativeDistributionFunctions = i -> j -> {
if(j==0) {
// The Brownian increment
double sqrtOfTimeStep = Math.sqrt(timeDiscretization.getTimeStep(i));
return x -> NormalDistribution.inverseCumulativeDistribution(x)*sqrtOfTimeStep;
}
else if(j==1) {
// The random jump size
return x -> NormalDistribution.inverseCumulativeDistribution(x);
}
else if(j==2) {
// The jump increment
double timeStep = timeDiscretization.getTimeStep(i);
PoissonDistribution poissonDistribution = new PoissonDistribution(jumpIntensity*timeStep);
return x -> poissonDistribution.inverseCumulativeDistribution(x);
}
else {
return null;
}
};
IndependentIncrements icrements = new IndependentIncrementsFromICDF(timeDiscretization, 3, numberOfPaths, seed, inverseCumulativeDistributionFunctions ) {
private static final long serialVersionUID = -7858107751226404629L;
@Override
public RandomVariable getIncrement(int timeIndex, int factor) {
if(factor == 1) {
RandomVariable Z = super.getIncrement(timeIndex, 1);
RandomVariable N = super.getIncrement(timeIndex, 2);
return Z.mult(N.sqrt());
}
else {
return super.getIncrement(timeIndex, factor);
}
}
};
// Create a corresponding MC process
MonteCarloProcessFromProcessModel process = new EulerSchemeFromProcessModel(icrements);
// Link model and process for delegation
process.setModel(model);
model.setProcess(process);
}
@Override
public LocalDateTime getReferenceDate() {
throw new UnsupportedOperationException("This model does not provide a reference date. Reference dates will be mandatory in a future version.");
}
@Override
public RandomVariable getAssetValue(double time, int assetIndex) throws CalculationException {
return getAssetValue(getTimeIndex(time), assetIndex);
}
@Override
public RandomVariable getAssetValue(int timeIndex, int assetIndex) throws CalculationException {
return model.getProcess().getProcessValue(timeIndex, assetIndex);
}
@Override
public RandomVariable getNumeraire(int timeIndex) throws CalculationException {
double time = getTime(timeIndex);
return model.getNumeraire(time);
}
@Override
public RandomVariable getNumeraire(double time) throws CalculationException {
return model.getNumeraire(time);
}
@Override
public RandomVariable getMonteCarloWeights(double time) throws CalculationException {
return getMonteCarloWeights(getTimeIndex(time));
}
/* (non-Javadoc)
* @see net.finmath.montecarlo.assetderivativevaluation.AssetModelMonteCarloSimulationModel#getNumberOfAssets()
*/
@Override
public int getNumberOfAssets() {
return 1;
}
@Override
public AssetModelMonteCarloSimulationModel getCloneWithModifiedData(Map dataModified) {
/*
* Determine the new model parameters from the provided parameter map.
*/
double newInitialTime = dataModified.get("initialTime") != null ? ((Number)dataModified.get("initialTime")).doubleValue() : getTime(0);
double newInitialValue = dataModified.get("initialValue") != null ? ((Number)dataModified.get("initialValue")).doubleValue() : initialValue;
double newRiskFreeRate = dataModified.get("riskFreeRate") != null ? ((Number)dataModified.get("riskFreeRate")).doubleValue() : model.getRiskFreeRate();
double newVolatility = dataModified.get("volatility") != null ? ((Number)dataModified.get("volatility")).doubleValue() : model.getVolatility();
double newJumpIntensity = dataModified.get("jumpIntensity") != null ? ((Number)dataModified.get("jumpIntensity")).doubleValue() : model.getJumpIntensity();
double newJumpSizeMean = dataModified.get("jumpSizeMean") != null ? ((Number)dataModified.get("jumpSizeMean")).doubleValue() : model.getVolatility();
double newJumpSizeStdDev = dataModified.get("jumpSizeStdDev") != null ? ((Number)dataModified.get("jumpSizeStdDev")).doubleValue() : model.getVolatility();
int newSeed = dataModified.get("seed") != null ? ((Number)dataModified.get("seed")).intValue() : seed;
return new MonteCarloMertonModel(model.getProcess().getTimeDiscretization().getTimeShiftedTimeDiscretization(newInitialTime-getTime(0)), model.getProcess().getNumberOfPaths(), newSeed, newInitialValue, newRiskFreeRate, newVolatility, newJumpIntensity, newJumpSizeMean, newJumpSizeStdDev);
}
@Override
public AssetModelMonteCarloSimulationModel getCloneWithModifiedSeed(int seed) {
Map dataModified = new HashMap<>();
dataModified.put("seed", new Integer(seed));
return getCloneWithModifiedData(dataModified);
}
@Override
public int getNumberOfPaths() {
return model.getProcess().getNumberOfPaths();
}
@Override
public TimeDiscretization getTimeDiscretization() {
return model.getProcess().getTimeDiscretization();
}
@Override
public double getTime(int timeIndex) {
return model.getProcess().getTime(timeIndex);
}
@Override
public int getTimeIndex(double time) {
return model.getProcess().getTimeIndex(time);
}
@Override
public RandomVariable getRandomVariableForConstant(double value) {
return model.getRandomVariableForConstant(value);
}
@Override
public RandomVariable getMonteCarloWeights(int timeIndex) throws CalculationException {
return model.getProcess().getMonteCarloWeights(timeIndex);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy