All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.optimizer.StochasticPathwiseLevenbergMarquardt Maven / Gradle / Ivy

/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 16.06.2006
 */
package net.finmath.optimizer;

import java.io.Serializable;
import java.util.Arrays;
import java.util.List;
import java.util.Vector;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;
import java.util.logging.Level;
import java.util.logging.Logger;

import net.finmath.functions.LinearAlgebra;
import net.finmath.montecarlo.RandomVariableFromDoubleArray;
import net.finmath.stochastic.RandomVariable;
import net.finmath.stochastic.Scalar;

/**
 * This class implements a stochastic Levenberg Marquardt non-linear least-squares fit
 * algorithm.
 * 

* The design avoids the need to define the objective function as a * separate class. The objective function is defined by overriding a class * method, see the sample code below. *

* *

* The Levenberg-Marquardt solver is implemented in using multi-threading. * The calculation of the derivatives (in case a specific implementation of * {@code setDerivatives(RandomVariable[] parameters, RandomVariable[][] derivatives)} is not * provided) may be performed in parallel by setting the parameter numberOfThreads. *

* *

* To use the solver inherit from it and implement the objective function as * {@code setValues(RandomVariable[] parameters, RandomVariable[] values)} where values has * to be set to the value of the objective functions for the given parameters. *
* You may also provide an a derivative for your objective function by * additionally overriding the function {@code setDerivatives(RandomVariable[] parameters, RandomVariable[][] derivatives)}, * otherwise the solver will calculate the derivative via finite differences. *

*

* To reject a point, it is allowed to set an element of values to {@link java.lang.Double#NaN} * in the implementation of {@code setValues(RandomVariable[] parameters, RandomVariable[] values)}. * Put differently: The solver handles NaN values in values as an error larger than * the current one (regardless of the current error) and rejects the point. *
* Note, however, that is is an error if the initial parameter guess results in an NaN value. * That is, the solver should be initialized with an initial parameter in an admissible region. *

* * The following simple example finds a solution for the equation
*
* * * * *
Sample linear system of equations.
* 0.0 * x1 + 1.0 * x2 = 5.0 *
* 2.0 * x1 + 1.0 * x2 = 10.0 *
*
* *
 * 
 * 	LevenbergMarquardt optimizer = new LevenbergMarquardt() {
 * 		// Override your objective function here
 * 		public void setValues(RandomVariable[] parameters, RandomVariable[] values) {
 * 			values[0] = parameters[0] * 0.0 + parameters[1];
 * 			values[1] = parameters[0] * 2.0 + parameters[1];
 * 		}
 * 	};
 *
 * 	// Set solver parameters
 * 	optimizer.setInitialParameters(new RandomVariable[] { 0, 0 });
 * 	optimizer.setWeights(new RandomVariable[] { 1, 1 });
 * 	optimizer.setMaxIteration(100);
 * 	optimizer.setTargetValues(new RandomVariable[] { 5, 10 });
 *
 * 	optimizer.run();
 *
 * 	RandomVariable[] bestParameters = optimizer.getBestFitParameters();
 * 
 * 
* * See the example in the main method below. * *

* The class can be initialized to use a multi-threaded valuation. If initialized * this way the implementation of setValues must be thread-safe. * The solver will evaluate the gradient of the value vector in parallel, i.e., * use as many threads as the number of parameters. *

* * Note: Iteration steps will be logged (java.util.logging) with LogLevel.FINE * * @author Christian Fries * @version 1.6 */ public abstract class StochasticPathwiseLevenbergMarquardt implements Serializable, Cloneable, StochasticOptimizer { private static final long serialVersionUID = 4560864869394838155L; private RandomVariable[] initialParameters = null; private RandomVariable[] parameterSteps = null; private RandomVariable[] targetValues = null; private RandomVariable[] weights = null; private int maxIteration; // Local state of the solver private double[] lambda; private double lambdaInitialValue = 0.001; private double lambdaDivisor = 1.3; private double lambdaMultiplicator = 2.0; private int numberOfPaths; private RandomVariable errorTolerance; private int iteration = 0; private RandomVariable[] parameterTest = null; private RandomVariable[] valueTest = null; private RandomVariable[] parameterCurrent = null; private RandomVariable[] valueCurrent = null; private RandomVariable[][] derivativeCurrent = null; private RandomVariable errorMeanSquaredCurrent = new RandomVariableFromDoubleArray(Double.POSITIVE_INFINITY); private RandomVariable errorRootMeanSquaredChange = new RandomVariableFromDoubleArray(Double.POSITIVE_INFINITY); private boolean[] isParameterCurrentDerivativeValid; /* * Used for multi-threadded calculation of the derivative. * The use may provide its own executor. If not and numberOfThreads > 1 * we will temporarily create an executor with the specified number of threads. * Note: If an executor was provided upon construction, it will not receive a shutdown when done. */ private ExecutorService executor = null; private boolean executorShutdownWhenDone = true; private final Logger logger = Logger.getLogger("net.finmath"); // A simple test public static void main(String[] args) throws SolverException { // RandomVariableDifferentiableAAD is possible here! // RandomVariable[] initialParameters = new RandomVariable[] { new RandomVariableDifferentiableAAD(2), new RandomVariableDifferentiableAAD(2) }; RandomVariable[] initialParameters = new RandomVariable[] { new RandomVariableFromDoubleArray(2), new RandomVariableFromDoubleArray(2) }; RandomVariable[] weights = new RandomVariable[] { new RandomVariableFromDoubleArray(1), new RandomVariableFromDoubleArray(1) }; RandomVariable[] parameterSteps = new RandomVariable[] { new RandomVariableFromDoubleArray(1), new RandomVariableFromDoubleArray(1) }; int maxIteration = 100; RandomVariable[] targetValues = new RandomVariable[] { new RandomVariableFromDoubleArray(25), new RandomVariableFromDoubleArray(100) }; StochasticPathwiseLevenbergMarquardt optimizer = new StochasticPathwiseLevenbergMarquardt(initialParameters, targetValues, weights, parameterSteps, maxIteration, null, null) { private static final long serialVersionUID = -282626938650139518L; // Override your objective function here @Override public void setValues(RandomVariable[] parameters, RandomVariable[] values) { values[0] = parameters[0].mult(0.0).add(parameters[1]).squared(); values[1] = parameters[0].mult(2.0).add(parameters[1]).squared(); } }; // Set solver parameters optimizer.run(); RandomVariable[] bestParameters = optimizer.getBestFitParameters(); System.out.println("The solver for problem 1 required " + optimizer.getIterations() + " iterations. The best fit parameters are:"); for (int i = 0; i < bestParameters.length; i++) { System.out.println("\tparameter[" + i + "]: " + bestParameters[i]); } System.out.println("The solver accuracy is " + optimizer.getRootMeanSquaredError()); /* * Creating a clone, continuing the search with new target values. * Note that we do not re-define the setValues method. */ // Optimizer optimizer2 = optimizer.getCloneWithModifiedTargetValues(new double[] { 5.1, 10.2 }, new double[] { 1, 1 }, true); // optimizer2.run(); // double[] bestParameters2 = optimizer2.getBestFitParameters(); // System.out.println("The solver for problem 2 required " + optimizer2.getIterations() + " iterations. The best fit parameters are:"); // for (int i = 0; i < bestParameters2.length; i++) System.out.println("\tparameter[" + i + "]: " + bestParameters2[i]); } /** * Create a Levenberg-Marquardt solver. * * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param weights Weights applied to the error. * @param parameterSteps Step used for finite difference approximation. * @param maxIteration Maximum number of iterations. * @param errorTolerance Error tolerance / accuracy. * @param executorService Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe! */ public StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters, RandomVariable[] targetValues, RandomVariable[] weights, RandomVariable[] parameterSteps, int maxIteration, RandomVariable errorTolerance, ExecutorService executorService) { super(); this.initialParameters = initialParameters; this.targetValues = targetValues; this.weights = weights; this.parameterSteps = parameterSteps; this.maxIteration = maxIteration; this.errorTolerance = errorTolerance != null ? errorTolerance : new RandomVariableFromDoubleArray(0.0); if(weights == null) { this.weights = new RandomVariable[targetValues.length]; for(int i=0; iWarning: If this number is larger than one, the implementation of setValues has to be thread safe! */ public StochasticPathwiseLevenbergMarquardt(RandomVariable[] initialParameters, RandomVariable[] targetValues, int maxIteration, int numberOfThreads) { this(initialParameters, targetValues, null, null, maxIteration, null, numberOfThreads > 1 ? Executors.newFixedThreadPool(numberOfThreads) : null); } /** * Create a Levenberg-Marquardt solver. * * @param initialParameters List of initial values for the parameters where the solver starts its search. * @param targetValues List of target values to achieve. * @param maxIteration Maximum number of iterations. * @param executorService Executor to be used for concurrent valuation of the derivatives. This is only performed if setDerivative is not overwritten. Warning: The implementation of setValues has to be thread safe! */ public StochasticPathwiseLevenbergMarquardt(List initialParameters, List targetValues, int maxIteration, ExecutorService executorService) { this(numberListToDoubleArray(initialParameters), numberListToDoubleArray(targetValues), null, null, maxIteration, null, executorService); } /** * Create a Levenberg-Marquardt solver. * * @param initialParameters Initial value for the parameters where the solver starts its search. * @param targetValues Target values to achieve. * @param maxIteration Maximum number of iterations. * @param numberOfThreads Maximum number of threads. Warning: If this number is larger than one, the implementation of setValues has to be thread safe! */ public StochasticPathwiseLevenbergMarquardt(List initialParameters, List targetValues, int maxIteration, int numberOfThreads) { this(numberListToDoubleArray(initialParameters), numberListToDoubleArray(targetValues), maxIteration, numberOfThreads); } /** * Convert a list of numbers to an array of doubles. * * @param listOfNumbers A list of numbers. * @return A corresponding array of doubles executing doubleValue() on each element. */ private static RandomVariable[] numberListToDoubleArray(List listOfNumbers) { RandomVariable[] array = new RandomVariable[listOfNumbers.size()]; for(int i=0; i 1."); } this.lambdaMultiplicator = lambdaMultiplicator; } /** * Get the divisor applied to lambda (for the next iteration) if the inversion of regularized * Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable. * * @return the lambdaDivisor */ public double getLambdaDivisor() { return lambdaDivisor; } /** * Set the divisor applied to lambda (for the next iteration) if the inversion of regularized * Hessian succeeds, that is, if \( H + \lambda \diag H \) is invertable. * * This will make lambda smaller, hence let the stepping move faster. * * @param lambdaDivisor the lambdaDivisor to set. Should be > 1. */ public void setLambdaDivisor(double lambdaDivisor) { if(lambdaDivisor <= 1.0) { throw new IllegalArgumentException("Parameter lambdaDivisor is required to be > 1."); } this.lambdaDivisor = lambdaDivisor; } @Override public RandomVariable[] getBestFitParameters() { return parameterCurrent; } @Override public double getRootMeanSquaredError() { return errorMeanSquaredCurrent.average().sqrt().doubleValue(); } /** * @param errorMeanSquaredCurrent the errorMeanSquaredCurrent to set */ public void setErrorMeanSquaredCurrent(RandomVariable errorMeanSquaredCurrent) { this.errorMeanSquaredCurrent = errorMeanSquaredCurrent; } @Override public int getIterations() { return iteration; } protected void prepareAndSetValues(RandomVariable[] parameters, RandomVariable[] values) throws SolverException { setValues(parameters, values); } protected void prepareAndSetDerivatives(RandomVariable[] parameters, RandomVariable[] values, RandomVariable[][] derivatives) throws SolverException { setDerivatives(parameters, derivatives); } /** * The objective function. Override this method to implement your custom * function. * * @param parameters Input value. The parameter vector. * @param values Output value. The vector of values f(i,parameters), i=1,...,n * @throws SolverException Thrown if the valuation fails, specific cause may be available via the cause() method. */ public abstract void setValues(RandomVariable[] parameters, RandomVariable[] values) throws SolverException; /** * The derivative of the objective function. You may override this method * if you like to implement your own derivative. * * @param parameters Input value. The parameter vector. * @param derivatives Output value, where derivatives[i][j] is d(value(j)) / d(parameters(i) * @throws SolverException Thrown if the valuation fails, specific cause may be available via the cause() method. */ public void setDerivatives(RandomVariable[] parameters, RandomVariable[][] derivatives) throws SolverException { // Calculate new derivatives. Note that this method is called only with // parameters = parameterTest, so we may use valueTest. parameters = parameterCurrent; Vector> valueFutures = new Vector<>(parameterCurrent.length); for (int parameterIndex = 0; parameterIndex < parameterCurrent.length; parameterIndex++) { final RandomVariable[] parametersNew = parameters.clone(); final RandomVariable[] derivative = derivatives[parameterIndex]; final int workerParameterIndex = parameterIndex; Callable worker = new Callable() { @Override public RandomVariable[] call() { RandomVariable parameterFiniteDifference; if(parameterSteps != null) { parameterFiniteDifference = parameterSteps[workerParameterIndex]; } else { /* * Try to adaptively set a parameter shift. Note that in some * applications it may be important to set parameterSteps. * appropriately. */ parameterFiniteDifference = parametersNew[workerParameterIndex].abs().add(1.0).mult(1E-8); } // Shift parameter value parametersNew[workerParameterIndex] = parametersNew[workerParameterIndex].add(parameterFiniteDifference); // Calculate derivative as (valueUpShift - valueCurrent) / parameterFiniteDifference try { prepareAndSetValues(parametersNew, derivative); } catch (Exception e) { // We signal an exception to calculate the derivative as NaN Arrays.fill(derivative, new RandomVariableFromDoubleArray(Double.NaN)); } for (int valueIndex = 0; valueIndex < valueCurrent.length; valueIndex++) { derivative[valueIndex] = derivative[valueIndex].sub(valueCurrent[valueIndex]).div(parameterFiniteDifference); derivative[valueIndex] = derivative[valueIndex].isNaN().sub(0.5).mult(-1).choose(derivative[valueIndex], new Scalar(0.0)); } return derivative; } }; if(executor != null) { Future valueFuture = executor.submit(worker); valueFutures.add(parameterIndex, valueFuture); } else { FutureTask valueFutureTask = new FutureTask<>(worker); valueFutureTask.run(); valueFutures.add(parameterIndex, valueFutureTask); } } for (int parameterIndex = 0; parameterIndex < parameterCurrent.length; parameterIndex++) { try { derivatives[parameterIndex] = valueFutures.get(parameterIndex).get(); } catch (InterruptedException e) { throw new SolverException(e); } catch (ExecutionException e) { throw new SolverException(e); } } } /** * You may override this method to implement a custom stop condition. * * @return Stop condition. */ boolean done() { // The solver terminates if... return // Maximum number of iterations is reached (iteration > maxIteration) || // Error does not improve by more that the given error tolerance (errorRootMeanSquaredChange.sub(errorTolerance).getMax() <= 0); } @Override public void run() throws SolverException { try { // Allocate memory int numberOfParameters = initialParameters.length; int numberOfValues = targetValues.length; parameterTest = initialParameters.clone(); parameterCurrent = initialParameters.clone(); valueTest = new RandomVariable[numberOfValues]; valueCurrent = new RandomVariable[numberOfValues]; Arrays.fill(valueCurrent, new RandomVariableFromDoubleArray(Double.NaN)); derivativeCurrent = new RandomVariable[numberOfParameters][numberOfValues]; iteration = 0; while(true) { // Count iterations iteration++; // Calculate values for test parameters prepareAndSetValues(parameterTest, valueTest); // Calculate error RandomVariable errorMeanSquaredTest = getMeanSquaredError(valueTest); /* * Note: The following test will be false if errorMeanSquaredTest is NaN. * That is: NaN is consider as a rejected point. */ RandomVariable isPointAccepted = errorMeanSquaredCurrent.sub(errorMeanSquaredTest); for(int parameterIndex = 0; parameterIndex= 0 ? lambda[pathIndex] / lambdaDivisor : lambda[pathIndex] * lambdaMultiplicator; } /* * Calculate new derivative at parameterTest (where point is accepted). * Note: the first argument should be parameterTest to use shortest operator tree. */ prepareAndSetDerivatives(parameterTest, valueTest, derivativeCurrent); /* * Calculate new parameterTest */ double[][] parameterIncrement = new double[parameterCurrent.length][numberOfPaths]; for(int pathIndex=0; pathIndex newTargetVaues, List newWeights, boolean isUseBestParametersAsInitialParameters) throws CloneNotSupportedException { StochasticPathwiseLevenbergMarquardt clonedOptimizer = clone(); clonedOptimizer.targetValues = numberListToDoubleArray(newTargetVaues); clonedOptimizer.weights = numberListToDoubleArray(newWeights); if(isUseBestParametersAsInitialParameters && this.done()) { clonedOptimizer.initialParameters = this.getBestFitParameters(); } return clonedOptimizer; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy