All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.functions.LinearAlgebra Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 23.02.2004
 */

package net.finmath.functions;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.QRDecomposition;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.SingularValueDecomposition;

/**
 * This class implements some methods from linear algebra (e.g. solution of a linear equation, PCA).
 *
 * It is basically a functional wrapper using either the Apache commons math or JBlas
 *
 * @author Christian Fries
 * @version 1.6
 */
public class LinearAlgebra {

	private static boolean isEigenvalueDecompositionViaSVD = Boolean.parseBoolean(System.getProperty("net.finmath.functions.LinearAlgebra.isEigenvalueDecompositionViaSVD","false"));
	private static boolean isSolverUseApacheCommonsMath;
	private static boolean isJBlasAvailable;

	static {
		// Default value is true, in which case we will NOT use jblas
		boolean isSolverUseApacheCommonsMath = Boolean.parseBoolean(System.getProperty("net.finmath.functions.LinearAlgebra.isUseApacheCommonsMath","true"));

		/*
		 * Check if jblas is available
		 */
		if(!isSolverUseApacheCommonsMath) {
			try {
				final double[] x = org.jblas.Solve.solve(new org.jblas.DoubleMatrix(2, 2, 1.0, 1.0, 0.0, 1.0), new org.jblas.DoubleMatrix(2, 1, 1.0, 1.0)).data;
				// The following should not happen.
				if(x[0] != 1.0 || x[1] != 0.0) {
					isJBlasAvailable = false;
				}
				else {
					isJBlasAvailable = true;
				}
			}
			catch(final java.lang.UnsatisfiedLinkError e) {
				isJBlasAvailable = false;
			}
		}

		if(!isJBlasAvailable) {
			isSolverUseApacheCommonsMath = true;
		}
		LinearAlgebra.isSolverUseApacheCommonsMath = isSolverUseApacheCommonsMath;
	}

	/**
	 * Find a solution of the linear equation A x = b where
	 * 
    *
  • A is an n x m - matrix given as double[n][m]
  • *
  • b is an m - vector given as double[m],
  • *
  • x is an n - vector given as double[n],
  • *
* using a standard Tikhonov regularization, i.e., we solve in the least square sense * A* x = b* * where A* = (A^T, lambda I)^T and b* = (b^T , 0)^T. * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @param lambda The parameter lambda of the Tikhonov regularization. Lambda effectively measures which small numbers are considered zero. * @return A solution x to A x = b. */ public static double[] solveLinearEquationTikonov(final double[][] matrixA, final double[] b, final double lambda) { if(lambda == 0) { return solveLinearEquationLeastSquare(matrixA, b); } /* * The copy of the array is inefficient, but the use cases for this method are currently limited. * And SVD is an alternative to this method. */ final int rows = matrixA.length; final int cols = matrixA[0].length; final double[][] matrixRegularized = new double[rows+cols][cols]; final double[] bRegularized = new double[rows+cols]; // Note the JVM initializes arrays to zero. for(int i=0; i *
  • A is an n x m - matrix given as double[n][m]
  • *
  • b is an m - vector given as double[m],
  • *
  • x is an n - vector given as double[n],
  • * * using a Tikhonov regularization, i.e., we solve in the least square sense * A* x = b* * where A* = (A^T, lambda0 I, lambda1 S, lambda2 C)^T and b* = (b^T , 0 , 0 , 0)^T. * * The matrix I is the identity matrix, effectively reducing the level of the solution vector. * The matrix S is the first order central finite difference matrix with -lambda1 on the element [i][i-1] and +lambda1 on the element [i][i+1] * The matrix C is the second order central finite difference matrix with -0.5 lambda2 on the element [i][i-1] and [i][i+1] and lambda2 on the element [i][i]. * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @param lambda0 The parameter lambda0 of the Tikhonov regularization. Reduces the norm of the solution vector. * @param lambda1 The parameter lambda1 of the Tikhonov regularization. Reduces the slope of the solution vector. * @param lambda2 The parameter lambda1 of the Tikhonov regularization. Reduces the curvature of the solution vector. * @return The solution x of the equation A* x = b* */ public static double[] solveLinearEquationTikonov(final double[][] matrixA, final double[] b, final double lambda0, final double lambda1, final double lambda2) { if(lambda0 == 0 && lambda1 ==0 && lambda2 == 0) { return solveLinearEquationLeastSquare(matrixA, b); } /* * The copy of the array is inefficient, but the use cases for this method are currently limited. * And SVD is an alternative to this method. */ final int rows = matrixA.length; final int cols = matrixA[0].length; final double[][] matrixRegularized = new double[rows+3*cols][cols]; final double[] bRegularized = new double[rows+3*cols]; // Note the JVM initializes arrays to zero. for(int i=0; i0) { matrixRow[j-1] = lambda1; } if(j0) { matrixRow[j-1] = -0.5 * lambda2; } if(j *
  • A is an n x m - matrix given as double[n][m]
  • *
  • b is an m - vector given as double[m],
  • *
  • x is an n - vector given as double[n],
  • * * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquation(final double[][] matrixA, final double[] b) { if(isSolverUseApacheCommonsMath) { final Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(matrixA); DecompositionSolver solver; if(matrix.getColumnDimension() == matrix.getRowDimension()) { solver = new LUDecomposition(matrix).getSolver(); } else { solver = new QRDecomposition(new Array2DRowRealMatrix(matrixA)).getSolver(); } // Using SVD - very slow // solver = new SingularValueDecomposition(new Array2DRowRealMatrix(A)).getSolver(); return solver.solve(new Array2DRowRealMatrix(b)).getColumn(0); } else { return org.jblas.Solve.solve(new org.jblas.DoubleMatrix(matrixA), new org.jblas.DoubleMatrix(b)).data; // For use of colt: // cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra(); // return linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray(); // For use of parallel colt: // return new cern.colt.matrix.tdouble.algo.decomposition.DenseDoubleLUDecomposition(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D(A)).solve(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D(b)).toArray(); } } /** * Find a solution of the linear equation A x = b where *
      *
    • A is an n x m - matrix given as double[n][m]
    • *
    • b is an m - vector given as double[m],
    • *
    • x is an n - vector given as double[n],
    • *
    * * @param matrixA The matrix A (left hand side of the linear equation). * @param b The vector (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquationSVD(final double[][] matrixA, final double[] b) { if(isSolverUseApacheCommonsMath) { final Array2DRowRealMatrix matrix = new Array2DRowRealMatrix(matrixA); // Using SVD - very slow final DecompositionSolver solver = new SingularValueDecomposition(matrix).getSolver(); return solver.solve(new Array2DRowRealMatrix(b)).getColumn(0); } else { return org.jblas.Solve.solve(new org.jblas.DoubleMatrix(matrixA), new org.jblas.DoubleMatrix(b)).data; // For use of colt: // cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra(); // return linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray(); // For use of parallel colt: // return new cern.colt.matrix.tdouble.algo.decomposition.DenseDoubleLUDecomposition(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D(A)).solve(new cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D(b)).toArray(); } } /** * Returns the inverse of a given matrix. * * @param matrix A matrix given as double[n][n]. * @return The inverse of the given matrix. */ public static double[][] invert(final double[][] matrix) { if(isSolverUseApacheCommonsMath) { // Use LU from common math final LUDecomposition lu = new LUDecomposition(new Array2DRowRealMatrix(matrix)); final double[][] matrixInverse = lu.getSolver().getInverse().getData(); return matrixInverse; } else { return org.jblas.Solve.pinv(new org.jblas.DoubleMatrix(matrix)).toArray2(); } } /** * Find a solution of the linear equation A x = b where *
      *
    • A is an symmetric n x n - matrix given as double[n][n]
    • *
    • b is an n - vector given as double[n],
    • *
    • x is an n - vector given as double[n],
    • *
    * * @param matrix The matrix A (left hand side of the linear equation). * @param vector The vector b (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquationSymmetric(final double[][] matrix, final double[] vector) { if(isSolverUseApacheCommonsMath) { final DecompositionSolver solver = new LUDecomposition(new Array2DRowRealMatrix(matrix)).getSolver(); return solver.solve(new Array2DRowRealMatrix(vector)).getColumn(0); } else { return org.jblas.Solve.solveSymmetric(new org.jblas.DoubleMatrix(matrix), new org.jblas.DoubleMatrix(vector)).data; /* To use the linear algebra package colt from cern. cern.colt.matrix.linalg.Algebra linearAlgebra = new cern.colt.matrix.linalg.Algebra(); double[] x = linearAlgebra.solve(new DenseDoubleMatrix2D(A), linearAlgebra.transpose(new DenseDoubleMatrix2D(new double[][] { b }))).viewColumn(0).toArray(); return x; */ } } /** * Find a solution of the linear equation A x = b in the least square sense where *
      *
    • A is an n x m - matrix given as double[n][m]
    • *
    • b is an m - vector given as double[m],
    • *
    • x is an n - vector given as double[n],
    • *
    * * @param matrix The matrix A (left hand side of the linear equation). * @param vector The vector b (right hand of the linear equation). * @return A solution x to A x = b. */ public static double[] solveLinearEquationLeastSquare(final double[][] matrix, final double[] vector) { // We use the linear algebra package apache commons math final DecompositionSolver solver = new SingularValueDecomposition(new Array2DRowRealMatrix(matrix, false)).getSolver(); return solver.solve(new ArrayRealVector(vector)).toArray(); } /** * Find a solution of the linear equation A X = B in the least square sense where *
      *
    • A is an n x m - matrix given as double[n][m]
    • *
    • B is an m x k - matrix given as double[m][k],
    • *
    • X is an n x k - matrix given as double[n][k],
    • *
    * * @param matrix The matrix A (left hand side of the linear equation). * @param rhs The matrix B (right hand of the linear equation). * @return A solution X to A X = B. */ public static double[][] solveLinearEquationLeastSquare(final double[][] matrix, final double[][] rhs) { // We use the linear algebra package apache commons math final DecompositionSolver solver = new SingularValueDecomposition(new Array2DRowRealMatrix(matrix, false)).getSolver(); return solver.solve(new Array2DRowRealMatrix(rhs)).getData(); } /** * Returns the matrix of the n Eigenvectors corresponding to the first n largest Eigenvalues of a correlation matrix. * These Eigenvectors can also be interpreted as "principal components" (i.e., the method implements the PCA). * * @param correlationMatrix The given correlation matrix. * @param numberOfFactors The requested number of factors (eigenvectors). * @return Matrix of n Eigenvectors (columns) (matrix is given as double[n][numberOfFactors], where n is the number of rows of the correlationMatrix. */ public static double[][] getFactorMatrix(final double[][] correlationMatrix, final int numberOfFactors) { return getFactorMatrixUsingCommonsMath(correlationMatrix, numberOfFactors); } /** * Returns a correlation matrix which has rank < n and for which the first n factors agree with the factors of correlationMatrix. * * @param correlationMatrix The given correlation matrix. * @param numberOfFactors The requested number of factors (Eigenvectors). * @return Factor reduced correlation matrix. */ public static double[][] factorReduction(final double[][] correlationMatrix, final int numberOfFactors) { return factorReductionUsingCommonsMath(correlationMatrix, numberOfFactors); } /** * Returns the matrix of the n Eigenvectors corresponding to the first n largest Eigenvalues of a correlation matrix. * These eigenvectors can also be interpreted as "principal components" (i.e., the method implements the PCA). * * @param correlationMatrix The given correlation matrix. * @param numberOfFactors The requested number of factors (Eigenvectors). * @return Matrix of n Eigenvectors (columns) (matrix is given as double[n][numberOfFactors], where n is the number of rows of the correlationMatrix. */ private static double[][] getFactorMatrixUsingCommonsMath(final double[][] correlationMatrix, final int numberOfFactors) { /* * Factor reduction */ // Create an eigen vector decomposition of the correlation matrix double[] eigenValues; double[][] eigenVectorMatrix; if(isEigenvalueDecompositionViaSVD) { final SingularValueDecomposition svd = new SingularValueDecomposition(new Array2DRowRealMatrix(correlationMatrix)); eigenValues = svd.getSingularValues(); eigenVectorMatrix = svd.getV().getData(); } else { final EigenDecomposition eigenDecomp = new EigenDecomposition(new Array2DRowRealMatrix(correlationMatrix, false)); eigenValues = eigenDecomp.getRealEigenvalues(); eigenVectorMatrix = eigenDecomp.getV().getData(); } class EigenValueIndex implements Comparable { private final int index; private final Double value; EigenValueIndex(final int index, final double value) { this.index = index; this.value = value; } @Override public int compareTo(final EigenValueIndex o) { return o.value.compareTo(value); } } final List eigenValueIndices = new ArrayList<>(); for(int i=0; i 0.0 ? 1.0 : -1.0; // Convention: Have first entry of eigenvector positive. This is to make results more consistent. double eigenVectorNormSquared = 0.0; for (int row = 0; row < eigenValues.length; row++) { eigenVectorNormSquared += eigenVectorMatrix[row][eigenVectorIndex] * eigenVectorMatrix[row][eigenVectorIndex]; } eigenValue = Math.max(eigenValue,0.0); for (int row = 0; row < eigenValues.length; row++) { factorMatrix[row][factor] = signChange * Math.sqrt(eigenValue/eigenVectorNormSquared) * eigenVectorMatrix[row][eigenVectorIndex]; } } return factorMatrix; } /** * Returns a correlation matrix which has rank < n and for which the first n factors agree with the factors of correlationMatrix. * * @param correlationMatrix The given correlation matrix. * @param numberOfFactors The requested number of factors (Eigenvectors). * @return Factor reduced correlation matrix. */ public static double[][] factorReductionUsingCommonsMath(final double[][] correlationMatrix, final int numberOfFactors) { // Extract factors corresponding to the largest eigenvalues final double[][] factorMatrix = getFactorMatrix(correlationMatrix, numberOfFactors); // Renormalize rows for (int row = 0; row < correlationMatrix.length; row++) { double sumSquared = 0; for (int factor = 0; factor < numberOfFactors; factor++) { sumSquared += factorMatrix[row][factor] * factorMatrix[row][factor]; } if(sumSquared != 0) { for (int factor = 0; factor < numberOfFactors; factor++) { factorMatrix[row][factor] = factorMatrix[row][factor] / Math.sqrt(sumSquared); } } else { // This is a rare case: The factor reduction of a completely decorrelated system to 1 factor for (int factor = 0; factor < numberOfFactors; factor++) { factorMatrix[row][factor] = 1.0; } } } // Orthogonalized again final double[][] reducedCorrelationMatrix = (new Array2DRowRealMatrix(factorMatrix).multiply(new Array2DRowRealMatrix(factorMatrix).transpose())).getData(); return getFactorMatrix(reducedCorrelationMatrix, numberOfFactors); } /** * Calculate the "matrix exponential" (expm). * * Note: The function currently requires jblas. If jblas is not availabe on your system, an exception will be thrown. * A future version of this function may implement a fall back. * * @param matrix The given matrix. * @return The exp(matrix). */ public double[][] exp(final double[][] matrix) { return org.jblas.MatrixFunctions.expm(new org.jblas.DoubleMatrix(matrix)).toArray2(); } /** * Calculate the "matrix exponential" (expm). * * Note: The function currently requires jblas. If jblas is not availabe on your system, an exception will be thrown. * A future version of this function may implement a fall back. * * @param matrix The given matrix. * @return The exp(matrix). */ public RealMatrix exp(final RealMatrix matrix) { return new Array2DRowRealMatrix(exp(matrix.getData())); } /** * Transpose a matrix * * @param matrix The given matrix. * @return The transposed matrix. */ public static double[][] transpose(final double[][] matrix){ //Get number of rows and columns of matrix final int numberOfRows = matrix.length; final int numberOfCols = matrix[0].length; //Instantiate a unitMatrix of dimension dim final double[][] transpose = new double[numberOfCols][numberOfRows]; //Create unit matrix for(int rowIndex = 0; rowIndex < numberOfRows; rowIndex++) { for(int colIndex = 0; colIndex < numberOfCols; colIndex++) { transpose[colIndex][rowIndex] = matrix[rowIndex][colIndex]; } } return transpose; } /** * Pseudo-Inverse of a matrix calculated in the least square sense. * * @param matrix The given matrix A. * @return pseudoInverse The pseudo-inverse matrix P, such that A*P*A = A and P*A*P = P */ public static double[][] pseudoInverse(final double[][] matrix){ if(isSolverUseApacheCommonsMath) { // Use LU from common math final SingularValueDecomposition svd = new SingularValueDecomposition(new Array2DRowRealMatrix(matrix)); final double[][] matrixInverse = svd.getSolver().getInverse().getData(); return matrixInverse; } else { return org.jblas.Solve.pinv(new org.jblas.DoubleMatrix(matrix)).toArray2(); } } /** * Generates a diagonal matrix with the input vector on its diagonal * * @param vector The given matrix A. * @return diagonalMatrix The matrix with the vectors entries on its diagonal */ public static double[][] diag(final double[] vector){ // Note: According to the Java Language spec, an array is initialized with the default value, here 0. final double[][] diagonalMatrix = new double[vector.length][vector.length]; for(int index = 0; index < vector.length; index++) { diagonalMatrix[index][index] = vector[index]; } return diagonalMatrix; } /** * Multiplication of two matrices. * * @param left The matrix A. * @param right The matrix B * @return product The matrix product of A*B (if suitable) */ public static double[][] multMatrices(final double[][] left, final double[][] right){ return new Array2DRowRealMatrix(left).multiply(new Array2DRowRealMatrix(right)).getData(); } }




    © 2015 - 2025 Weber Informatics LLC | Privacy Policy