net.finmath.montecarlo.BrownianMotionWithControlVariate Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of finmath-lib Show documentation
Show all versions of finmath-lib Show documentation
finmath lib is a Mathematical Finance Library in Java.
It provides algorithms and methodologies related to mathematical finance.
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 25.05.2013
*/
package net.finmath.montecarlo;
import java.util.HashMap;
import java.util.Map;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* Provides a Brownian motion from given (independent) increments and performs a control of the expectation and the standard deviation.
*
* This class references a class providing Brownian increments \( \Delta U(t_{i}) \) and transforms them via
* \[
* \Delta W(t_{i}) = a \Delta U(t_{i}) + b
* \]
* such that \Delta W(t_{i}) has exact mean 0 and exact standard deviation \( \sqrt{\Delta t_{i}} \).
*
* @author Christian Fries
* @version 1.0
*/
public class BrownianMotionWithControlVariate implements BrownianMotion {
private final BrownianMotion brownianMotion;
private transient Map averages = new HashMap<>();
private transient Map scalings = new HashMap<>();
/**
* Create a controlled Brownian motion.
*
* @param brownianMotion The Brownian motion providing the (un-controlled) factors dUj.
*/
public BrownianMotionWithControlVariate(final BrownianMotion brownianMotion) {
super();
this.brownianMotion = brownianMotion;
}
@Override
public RandomVariable getBrownianIncrement(final int timeIndex, final int factorIndex) {
final RandomVariable brownianIncrement = brownianMotion.getBrownianIncrement(timeIndex, factorIndex);
final int mapIndex = timeIndex * brownianMotion.getNumberOfFactors() + factorIndex;
final double average = averages.computeIfAbsent(mapIndex, index -> { return brownianIncrement.getAverage();});
final double scaling = scalings.computeIfAbsent(mapIndex, index -> { return Math.sqrt(brownianMotion.getTimeDiscretization().getTimeStep(timeIndex)) / brownianIncrement.getStandardDeviation();});
RandomVariable brownianIncrementControlled = brownianIncrement;
if(average != 0.0) {
brownianIncrementControlled = brownianIncrementControlled.sub(average);
}
if(Double.isFinite(scaling) && scaling != 1.0) {
brownianIncrementControlled = brownianIncrementControlled.mult(scaling);
}
return brownianIncrementControlled;
}
@Override
public TimeDiscretization getTimeDiscretization() {
return brownianMotion.getTimeDiscretization();
}
@Override
public int getNumberOfFactors() {
return brownianMotion.getNumberOfFactors();
}
@Override
public int getNumberOfPaths() {
return brownianMotion.getNumberOfPaths();
}
@Override
public RandomVariable getRandomVariableForConstant(final double value) {
return brownianMotion.getRandomVariableForConstant(value);
}
@Override
public BrownianMotion getCloneWithModifiedSeed(final int seed) {
return new BrownianMotionWithControlVariate(brownianMotion.getCloneWithModifiedSeed(seed));
}
@Override
public BrownianMotion getCloneWithModifiedTimeDiscretization(final TimeDiscretization newTimeDiscretization) {
return new BrownianMotionWithControlVariate(brownianMotion.getCloneWithModifiedTimeDiscretization(newTimeDiscretization));
}
@Override
public RandomVariable getIncrement(final int timeIndex, final int factor) {
return getBrownianIncrement(timeIndex, factor);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy