All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.JumpProcessIncrements Maven / Gradle / Ivy

Go to download

finmath lib is a Mathematical Finance Library in Java. It provides algorithms and methodologies related to mathematical finance.

There is a newer version: 6.0.19
Show newest version
/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 09.02.2004
 */
package net.finmath.montecarlo;

import java.io.IOException;
import java.io.Serializable;
import java.util.Arrays;

import net.finmath.functions.PoissonDistribution;
import net.finmath.randomnumbers.MersenneTwister;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;

/**
 * Implementation of a time-discrete n-dimensional jump process
 * J = (J1,...,Jn) where Ji is
 * a Poisson jump process and Ji, Jj are
 * independent for i not equal j.
 *
 * Here the dimension n is called factors since the increments are used to
 * generate multi-dimensional multi-factor processes and there one might
 * use a different number of factors to generate processes of different
 * dimension.
 *
 * The quadruppel (time discretization, jumpIntensities, number of paths, seed)
 * defines the state of an object of this class.
 *
 * The class is immutable and thread safe. It uses lazy initialization.
 *
 * @author Christian Fries
 * @version 1.6
 */
public class JumpProcessIncrements implements IndependentIncrements, Serializable {

	private static final long serialVersionUID = -5430067621669213475L;

	private final TimeDiscretization						timeDiscretization;

	private final int			numberOfPaths;
	private final int			seed;

	private final double[]		jumpIntensities;

	private final RandomVariableFactory abstractRandomVariableFactory;

	private transient	RandomVariable[][]	increments;
	private	transient	Object						incrementsLazyInitLock = new Object();

	/**
	 * Construct a jump process.
	 *
	 * The constructor allows to set the factory to be used for the construction of
	 * random variables. This allows to generate increments represented
	 * by different implementations of the RandomVariable (e.g. the RandomVariableFromFloatArray internally
	 * using float representations).
	 *
	 * @param timeDiscretization The time discretization used for the increments.
	 * @param jumpIntensities The jump intensities, one for each factor.
	 * @param numberOfPaths Number of paths to simulate.
	 * @param seed The seed of the random number generator.
	 * @param abstractRandomVariableFactory Factory to be used to create random variable.
	 */
	public JumpProcessIncrements(
			final TimeDiscretization timeDiscretization,
			final double[] jumpIntensities,
			final int numberOfPaths,
			final int seed,
			final RandomVariableFactory abstractRandomVariableFactory) {
		super();
		this.timeDiscretization = timeDiscretization;
		this.jumpIntensities	= jumpIntensities;
		this.numberOfPaths		= numberOfPaths;
		this.seed				= seed;

		this.abstractRandomVariableFactory = abstractRandomVariableFactory;

		increments	= null; 	// Lazy initialization
	}

	/**
	 * Construct a jump process.
	 *
	 * @param timeDiscretization The time discretization used for the Brownian increments.
	 * @param jumpIntensities The vector of jump intensities, one intensity for each factor.
	 * @param numberOfPaths Number of paths to simulate.
	 * @param seed The seed of the random number generator.
	 */
	public JumpProcessIncrements(
			final TimeDiscretization timeDiscretization,
			final double[] jumpIntensities,
			final int numberOfPaths,
			final int seed) {
		this(timeDiscretization, jumpIntensities, numberOfPaths, seed, new RandomVariableFromArrayFactory());
	}

	@Override
	public JumpProcessIncrements getCloneWithModifiedSeed(final int seed) {
		return new JumpProcessIncrements(getTimeDiscretization(), jumpIntensities, getNumberOfPaths(), seed);
	}

	@Override
	public JumpProcessIncrements getCloneWithModifiedTimeDiscretization(final TimeDiscretization newTimeDiscretization) {
		/// @TODO This can be improved: a complete recreation of the Brownian motion wouldn't be necessary!
		return new JumpProcessIncrements(newTimeDiscretization, jumpIntensities, getNumberOfPaths(), getSeed());
	}

	@Override
	public RandomVariable getIncrement(final int timeIndex, final int factor) {

		// Thread safe lazy initialization
		synchronized(incrementsLazyInitLock) {
			if(increments == null) {
				doGenerateIncrements();
			}
		}

		/*
		 *  We return an immutable object which ensures that the receiver does not alter the data.
		 */
		return increments[timeIndex][factor];
	}

	/**
	 * Lazy initialization of brownianIncrement. Synchronized to ensure thread safety of lazy init.
	 */
	private void doGenerateIncrements() {
		if(increments != null) {
			return;	// Nothing to do
		}

		// Create random number sequence generator
		final MersenneTwister mersenneTwister = new MersenneTwister(seed);

		// Allocate memory
		final double[][][] incrementsArray = new double[timeDiscretization.getNumberOfTimeSteps()][jumpIntensities.length][numberOfPaths];

		// Pre-calculate Poisson distributions
		final PoissonDistribution[][] poissonDistribution = new PoissonDistribution[timeDiscretization.getNumberOfTimeSteps()][jumpIntensities.length];
		for(int timeIndex=0; timeIndex




© 2015 - 2025 Weber Informatics LLC | Privacy Policy