All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.finmath.montecarlo.assetderivativevaluation.MonteCarloMultiAssetBlackScholesModel Maven / Gradle / Ivy

/*
 * (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
 *
 * Created on 09.06.2014
 */
package net.finmath.montecarlo.assetderivativevaluation;

import java.util.Arrays;
import java.util.Map;

import net.finmath.exception.CalculationException;
import net.finmath.functions.LinearAlgebra;
import net.finmath.montecarlo.BrownianMotion;
import net.finmath.montecarlo.BrownianMotionLazyInit;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.process.EulerSchemeFromProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcessFromProcessModel;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;

/**
 * This class glues together a BlackScholeModel and a Monte-Carlo implementation of a MonteCarloProcessFromProcessModel
 * and forms a Monte-Carlo implementation of the Black-Scholes Model by implementing AssetModelMonteCarloSimulationModel.
 *
 * The model is
 * \[
 * 	dS_{i} = r S_{i} dt + \sigma_{i} S_{i} dW_{i}, \quad S_{i}(0) = S_{i,0},
 * \]
 * \[
 * 	dN = r N dt, \quad N(0) = N_{0},
 * \]
 * \[
 * 	dW_{i} dW_{j} = \rho_{i,j} dt,
 * \]
 *
 * The class provides the model of \( S_{i} \) to an {@link net.finmath.montecarlo.process.MonteCarloProcess} via the specification of
 * \( f = exp \), \( \mu_{i} = r - \frac{1}{2} \sigma_{i}^2 \), \( \lambda_{i,j} = \sigma_{i} g_{i,j} \), i.e.,
 * of the SDE
 * \[
 * 	dX_{i} = \mu_{i} dt + \lambda_{i,j} dW, \quad X_{i}(0) = \log(S_{i,0}),
 * \]
 * with \( S = f(X) \). See {@link net.finmath.montecarlo.process.MonteCarloProcess} for the notation.
 *
 * @author Christian Fries
 * @see net.finmath.montecarlo.process.MonteCarloProcess The interface for numerical schemes.
 * @see net.finmath.montecarlo.model.ProcessModel The interface for models provinding parameters to numerical schemes.
 * @version 1.0
 */
public class MonteCarloMultiAssetBlackScholesModel extends AbstractProcessModel implements AssetModelMonteCarloSimulationModel {

	private final double[]		initialValues;
	private final double		riskFreeRate;		// Actually the same as the drift (which is not stochastic)
	private final double[]		volatilities;
	private final double[][]	factorLoadings;

	private static final int seed = 3141;

	private final RandomVariable[]		initialStates;
	private final RandomVariable[]		drift;
	private final RandomVariable[][]	factorLoadingOnPaths;

	/**
	 * Create a Monte-Carlo simulation using given time discretization.
	 *
	 * @param brownianMotion The Brownian motion to be used for the numerical scheme.
	 * @param initialValues Spot values.
	 * @param riskFreeRate The risk free rate.
	 * @param volatilities The log volatilities.
	 * @param correlations A correlation matrix.
	 */
	public MonteCarloMultiAssetBlackScholesModel(
			final BrownianMotion brownianMotion,
			final double[]	initialValues,
			final double		riskFreeRate,
			final double[]	volatilities,
			final double[][]	correlations
			) {
		super();

		// Create a corresponding MC process
		final MonteCarloProcessFromProcessModel process = new EulerSchemeFromProcessModel(brownianMotion);

		this.initialValues	= initialValues;
		this.riskFreeRate	= riskFreeRate;
		this.volatilities	= volatilities;
		factorLoadings = LinearAlgebra.getFactorMatrix(correlations, correlations.length);


		/*
		 * The interface definition requires that we provide the initial value, the drift and the volatility in terms of random variables.
		 * We construct the corresponding random variables here and will return (immutable) references to them.
		 *
		 * Since the underlying process is configured to simulate log(S),
		 * the initial value and the drift are transformed accordingly.
		 *
		 */
		initialStates = new RandomVariable[getNumberOfComponents()];
		drift = new RandomVariable[getNumberOfComponents()];
		factorLoadingOnPaths = new RandomVariable[getNumberOfComponents()][];
		for(int underlyingIndex = 0; underlyingIndex dataModified) {

		double[]	newInitialValues = initialValues;
		double		newRiskFreeRate = riskFreeRate;
		double[]	newVolatilities = volatilities;
		double[][]	newCorrelations = null;// = correlations;

		if(dataModified.containsKey("initialValues")) {
			newInitialValues = (double[]) dataModified.get("initialValues");
		}
		if(dataModified.containsKey("riskFreeRate")) {
			newRiskFreeRate = ((Double)dataModified.get("riskFreeRate")).doubleValue();
		}
		if(dataModified.containsKey("volatilities")) {
			newVolatilities = (double[]) dataModified.get("volatilities");
		}
		if(dataModified.containsKey("correlations")) {
			newCorrelations = (double[][]) dataModified.get("correlations");
		}

		return new MonteCarloMultiAssetBlackScholesModel(getTimeDiscretization(), getNumberOfPaths(), newInitialValues, newRiskFreeRate, newVolatilities, newCorrelations);
	}

	@Override
	public AssetModelMonteCarloSimulationModel getCloneWithModifiedSeed(final int seed) {
		// TODO Auto-generated method stub
		return null;
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy