net.finmath.montecarlo.assetderivativevaluation.MonteCarloMultiAssetBlackScholesModel Maven / Gradle / Ivy
/*
* (c) Copyright Christian P. Fries, Germany. Contact: [email protected].
*
* Created on 09.06.2014
*/
package net.finmath.montecarlo.assetderivativevaluation;
import java.util.Arrays;
import java.util.Map;
import net.finmath.exception.CalculationException;
import net.finmath.functions.LinearAlgebra;
import net.finmath.montecarlo.BrownianMotion;
import net.finmath.montecarlo.BrownianMotionLazyInit;
import net.finmath.montecarlo.model.AbstractProcessModel;
import net.finmath.montecarlo.process.EulerSchemeFromProcessModel;
import net.finmath.montecarlo.process.MonteCarloProcessFromProcessModel;
import net.finmath.stochastic.RandomVariable;
import net.finmath.time.TimeDiscretization;
/**
* This class glues together a BlackScholeModel
and a Monte-Carlo implementation of a MonteCarloProcessFromProcessModel
* and forms a Monte-Carlo implementation of the Black-Scholes Model by implementing AssetModelMonteCarloSimulationModel
.
*
* The model is
* \[
* dS_{i} = r S_{i} dt + \sigma_{i} S_{i} dW_{i}, \quad S_{i}(0) = S_{i,0},
* \]
* \[
* dN = r N dt, \quad N(0) = N_{0},
* \]
* \[
* dW_{i} dW_{j} = \rho_{i,j} dt,
* \]
*
* The class provides the model of \( S_{i} \) to an {@link net.finmath.montecarlo.process.MonteCarloProcess}
via the specification of
* \( f = exp \), \( \mu_{i} = r - \frac{1}{2} \sigma_{i}^2 \), \( \lambda_{i,j} = \sigma_{i} g_{i,j} \), i.e.,
* of the SDE
* \[
* dX_{i} = \mu_{i} dt + \lambda_{i,j} dW, \quad X_{i}(0) = \log(S_{i,0}),
* \]
* with \( S = f(X) \). See {@link net.finmath.montecarlo.process.MonteCarloProcess} for the notation.
*
* @author Christian Fries
* @see net.finmath.montecarlo.process.MonteCarloProcess The interface for numerical schemes.
* @see net.finmath.montecarlo.model.ProcessModel The interface for models provinding parameters to numerical schemes.
* @version 1.0
*/
public class MonteCarloMultiAssetBlackScholesModel extends AbstractProcessModel implements AssetModelMonteCarloSimulationModel {
private final double[] initialValues;
private final double riskFreeRate; // Actually the same as the drift (which is not stochastic)
private final double[] volatilities;
private final double[][] factorLoadings;
private static final int seed = 3141;
private final RandomVariable[] initialStates;
private final RandomVariable[] drift;
private final RandomVariable[][] factorLoadingOnPaths;
/**
* Create a Monte-Carlo simulation using given time discretization.
*
* @param brownianMotion The Brownian motion to be used for the numerical scheme.
* @param initialValues Spot values.
* @param riskFreeRate The risk free rate.
* @param volatilities The log volatilities.
* @param correlations A correlation matrix.
*/
public MonteCarloMultiAssetBlackScholesModel(
final BrownianMotion brownianMotion,
final double[] initialValues,
final double riskFreeRate,
final double[] volatilities,
final double[][] correlations
) {
super();
// Create a corresponding MC process
final MonteCarloProcessFromProcessModel process = new EulerSchemeFromProcessModel(brownianMotion);
this.initialValues = initialValues;
this.riskFreeRate = riskFreeRate;
this.volatilities = volatilities;
factorLoadings = LinearAlgebra.getFactorMatrix(correlations, correlations.length);
/*
* The interface definition requires that we provide the initial value, the drift and the volatility in terms of random variables.
* We construct the corresponding random variables here and will return (immutable) references to them.
*
* Since the underlying process is configured to simulate log(S),
* the initial value and the drift are transformed accordingly.
*
*/
initialStates = new RandomVariable[getNumberOfComponents()];
drift = new RandomVariable[getNumberOfComponents()];
factorLoadingOnPaths = new RandomVariable[getNumberOfComponents()][];
for(int underlyingIndex = 0; underlyingIndex dataModified) {
double[] newInitialValues = initialValues;
double newRiskFreeRate = riskFreeRate;
double[] newVolatilities = volatilities;
double[][] newCorrelations = null;// = correlations;
if(dataModified.containsKey("initialValues")) {
newInitialValues = (double[]) dataModified.get("initialValues");
}
if(dataModified.containsKey("riskFreeRate")) {
newRiskFreeRate = ((Double)dataModified.get("riskFreeRate")).doubleValue();
}
if(dataModified.containsKey("volatilities")) {
newVolatilities = (double[]) dataModified.get("volatilities");
}
if(dataModified.containsKey("correlations")) {
newCorrelations = (double[][]) dataModified.get("correlations");
}
return new MonteCarloMultiAssetBlackScholesModel(getTimeDiscretization(), getNumberOfPaths(), newInitialValues, newRiskFreeRate, newVolatilities, newCorrelations);
}
@Override
public AssetModelMonteCarloSimulationModel getCloneWithModifiedSeed(final int seed) {
// TODO Auto-generated method stub
return null;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy